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Abstract: 
Model-driven development (MDD) has been gaining importance as an approach to resolving 
lifecycle challenges of large-scale distributed real-time and embedded (DRE) systems (e.g., joint 
emergency response systems, avionics, and automotive systems), including design, development, 
testing, maintenance and evolution. DRE systems are characterized by their stringent 
requirements for quality of service (QoS), such as predictable end-to-end latencies, timeliness and 
scalability. Delivering the QoS needs of DRE systems entails the need to configure correctly, fine 
tune and provision the infrastructure used to host the DRE systems, which crosscuts different 
layers of middleware, operating systems and networks. Addressing these tangled deployment and 
configuration concerns of DRE systems requires integrating the principles of Aspect-Oriented 
Software Design (AOSD) with MDD. 
 
This paper describes the integration of the C-SAW aspect weaving tool with the CoSMIC MDD 
tool suite to resolve the accidental complexities involved in the configuration and deployment of 
component middleware-based DRE systems. 

1. Challenge Problems 
 
Quality of service (QoS)-enabled component middleware, such as lightweight CORBA 
Component Model (CCM) (and to some extent J2EE and .Net for the domains they are used in) 
are increasingly being used to develop and control mission-critical, large-scale DRE systems. 
Figure 1 illustrates a representative DRE system highlighting a joint emergency response system. 
DRE systems share the following characteristics giving rise to tangled concerns in its 
development and maintenance lifecycle: 

 
1. Heterogeneity. Large-scale DRE systems often run on a variety of computing platforms 

that are interconnected by different types of networking technologies with varying QoS 
properties. The efficiency and predictability of DRE systems built using different 
infrastructure components varies according to the type of computing platform and 
interconnection technology. 

2. Deeply embedded properties. DRE systems are frequently composed of multiple 
embedded subsystems. For example, an anti-lock braking software control system forms a 
resource-constrained subsystem that is part of a larger DRE application controlling the 
overall operation of an automobile. 

3. Simultaneous support for multiple QoS properties. DRE software controllers are 
increasingly replacing mechanical and human control of critical systems. These controllers 



must simultaneously support many 
challenging QoS constraints, 
including (1) real-time 
requirements, such as low latency 
and bounded jitter, (2) availability 
requirements, such as fault 
propagation/recovery across 
distribution boundaries, (3) 
security requirements, such as 
appropriate authentication and 
authorization, and (4) physical 
requirements, such as limited 
weight, power consumption, and 
memory footprint. For example, a 
distributed patient monitoring 
system requires predictable, 
reliable, and secure monitoring of patient health data that can be distributed in a timely 
manner to healthcare providers.  

4. Large-scale, network-centric operation. The scale and complexity of DRE systems 
makes it infeasible to deploy them in disconnected, standalone configurations. The 
functionality of DRE systems is therefore partitioned and distributed over a range of 
networks. For example, an urban bio-terrorist evacuation capability requires highly 
distributed functionality involving networks connecting command and control centers with 
bio-sensors that collect data from police, hospitals, and urban traffic management systems. 

5. Dynamic operating conditions. Operating conditions for large-scale DRE systems can 
change dynamically, resulting in the need for appropriate adaptation and resource 
management strategies for continued successful system operation. In civilian contexts, for 
instance, power outages underscore the need to detect failures in a timely manner and adapt 
in real-time to maintain mission-critical power grid operations. In military contexts, 
likewise, a mission mode change or loss of functionality due to an attack in combat 
operations requires adaptation and resource reallocation to continue with mission-critical 
capabilities. 

2. Concern Separation using Model-Driven Development 
 
MDD technologies, such as the Object Management Group (OMG)’s Model-driven Architecture 
(MDA), have emerged to address the different lifecycle challenges of DRE systems outlined 
above, which includes satisfying both the functional and QoS needs of DRE systems during 
design, development, testing, maintenance, and evolution stages. Figure 2 illustrates how a MDD 
tool chain coordinates with design-time analysis tools and run-time infrastructure (such as 
middleware, OS and networks) to address DRE system lifecycle challenges described below: 

• Specification and implementation, which enables application functionality specification, 
partitioning, and implementation as components. 

• Packaging, which allows bundling a suite of software binary modules and metadata 
representing application components. 

• Installation, which involves populating a repository with the packages required by the 
application. 

• Configuration, which allows configuration of the packages with the appropriate 
parameters to satisfy the functional and systemic requirements of application without 
constraining to any physical resources. 

 
Figure 1.  Sample DRE System 



• Planning, which makes appropriate deployment decisions including identifying the 
entities, such as CPUs, of the target environment where the packages will be deployed. 

• Preparation, which moves the binaries to the identified entities of the target environment. 
• Launching, which triggers the installed binaries and brings the application to a ready 

state. 
• Adaptation, which enables run-time reconfiguration and resource management to 

maintain end to-end QoS. 
 
 

 

 
Figure 2 also demonstrates how the various stages of the DRE systems lifecycle are tangled with 
different layers of the infrastructure that host the DRE systems. MDD tools in association with 
AOSD techniques can assist in untangling the crosscutting concerns at each stage of the DRE 
lifecycle, which helps improve productivity and time-to-market.  

3. Applying AOSD Principles to MDD Toolsuites 
This section showcases how the CoSMIC MDD tool suite is used in conjunction with the C-SAW 
model weaver to address the tangled concerns encountered in the DRE system lifecycle. We 
briefly describe the two tools and show how we are integrating them to resolve DRE system 
lifecycle challenges. 
 
3.1 The CoSMIC MDD Tool suite 
 
The deployment and configuration of middleware typically involves manual modification to 
meta-data that is split across multiple XML descriptors. A key evolution and change management 

 
Figure 2: DRE Systems Lifecycle Stages 



problem exists because of the inter-dependencies and crosscutting between descriptors, and the 
fact that manual modification of large XML files is error-prone.  

 
 
 
The Component Synthesis with Model Integrated Computing (CoSMIC) [3] tools (available at 
http://www.dre.vanderbilt.edu/cosmic /) are developed using the Generic Modeling Environment 
(GME) [6], which is a metamodeling environment that defines the modeling paradigms for each 
stage of the CoSMIC tool chain. The CoSMIC MDD toolsuite illustrated in Figure 3 is a 
collection of domain-specific modeling languages (DSMLs) and generative tools to address the 
concerns at different stages of DRE systems lifecycle shown in Figure 2. 
 
The CoSMIC tools use GME to enforce their “correct by construction” techniques, as opposed to 
the “construct by correction” techniques commonly used by post-construction tools, such as 
compilers, source-level debuggers, and script validators. CoSMIC ensures that the rules of 
construction – and the models constructed according to these rules – can evolve together over 
time. Each CoSMIC tool synthesizes metadata in XML for use in the underlying middleware. The 
CoSMIC tool suite currently uses a platform-specific model approach that integrates the modeling 
technology with QoS-enabled component middleware, such as CIAO [1] (available at 
http://www.cs.wustl.edu/~schmidt/CIAO.html). CoSMIC provides the capability to inter work 
with third party model checking tools, such as Cadena from Kansas State University [5], and 
aspect model weavers, such as C-SAW [4]. 
 
3.2 Aspect Weaving at the Modeling Level 
 
We have discovered that many properties and policies within a DRE system (e.g., eager/lazy 
evaluation, processor assignment policies, component placement, and QoS policies) crosscut the 

Figure 3: CoSMIC MDD Tool suite 
 



Figure 4: Application of C-SAW 

model hierarchy and are spread across many locations within a model. These crosscutting 
properties represent a common global concern, but their scattering across the model requires 
much manual adaptation in order to explore design variations. Extensive manual adaptation 
within a modeling tool can be time consuming and an error prone activity. In combination with 
CoSMIC, aspect modeling approaches offer relevant benefits of applying aspect-oriented 
principles to models in order to better isolate crosscutting concerns. The Constraint-Specification 
Aspect Weaver (C-SAW) model weaver (available at http://www.cis.uab.edu/gray/Research/C-
SAW/ and shown in Figure 4) is a general model transformation engine that provides a capability 
to describe the essence of a concern and transform a model accordingly. In C-SAW, aspects are 
defined at the modeling abstraction level using the Embedded Constraint Language (ECL). C-
SAW provides the ability to assist a modeler in quickly inserting and removing new properties 
and policies into a model without the need for extensive manual adaptation.  
 
3.3 Brief Example Application of AOSD in 
CoSMIC 
 
EQAL1 (Event Quality Aspect Language) is 
a domain-specific modeling language within 
CoSMIC that assists in the specification and 
configuration of federated event channels 
[2]. Figure 4 shows an EQAL model with 
three sites. To scale-up an event channel 
requires changes to many different model 
locations. C-SAW can automate the scaling 
task - an ECL strategy specification is used 
to scale up any site as well as the 
corresponding connections in the EQAL 
model. C-SAW takes the original EQAL 
model and the ECL specifications, and then 
generates the new scaled-up EQAL model 
with additional sites. Three steps are 
included, as listed below and show in 
Listing 1:  

• Add extra CORBA_Gateways to the 
existing sites 

• Repeatedly replicate the site as an 
instance 

• Create connections between all of the 

sites 
 
 
 
 
 
 
 
 

                                                 
1 Original name for this tool was FESML but was later subsumed within the EQAL tool 

in CoSMIC 



//recursively add sites 
strategy addSite_r(max,idx: integer) 
{ 
  if (idx <= max) then 
    addSite(idx); 
    addSite_r(max,idx+1); 
  endif; 
 
  rootFolder().findModel("NewGateway_Federation"). 
               findModel("Site 1").addGateWay_r(max, idx); 
} 
 
strategy addSite(idx: integer) 
{ 
  // update NewGateWay_Federation model via adding one Site instance 
  rootFolder().findModel("NewGateway_Federation").updateNGF(idx);   
} 

strategy updateNGF(idx:integer) 
{ 
  declare site, site_ins : object; 
  declare id_str : string; 
 
  id_str := intToString(idx); 
   
  // create Site instance 
  site := findModel("Site 1"); 
  site_ins := addInstance("Site", "Site " + id_str, site);   
} 
 
strategy addGateWay_r(max, idx: integer) 
{ 
  if (idx<=max) then 
 addGateWay(); 
 addGateWay(max, idx+1); 
  endif; 
} 
 
strategy addGateWay( ) 
{ 
  addAtom("CORBA_Gateway", "CORBA_Gateway"); 
} 
 

Listing 1: ECL Specification to Scale EQAL Model 
 

We have applied the strengths of the C-SAW in a similar fashion to different CoSMIC DSMLs. 
For example, we have used C-SAW to scale the models of component assemblies and packages 
that are modeled using CoSMIC’s PICML tool, and are currently exploring its use to define other 
crosscutting concerns, such as configuring the component middleware’s container QoS policies, 
or the component collocation and placement strategies.   

4. Conclusions 
This paper illustrates the tangling of concerns in the deployment and configuration of distributed 
real-time and embedded systems. Model driven generative technologies help address these 
concerns by alleviating several accidental complexities arising in the modeling process. Yet, 
MDD tools alone are not sufficient since they cannot scale in some cases. Additionally, some of 



the modeling activities can become tedious and repetitive while addressing crosscutting concerns. 
Aspect weaving at the modeling level resolves these problems. This paper describes ongoing 
work along with a short case study on integrating the C-SAW aspect weaving tool with the 
CoSMIC model driven development tool suite. All the tools described in this paper are available 
for download at the web sites referenced in the paper. 
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