
An Integrated Aspect-oriented Model-driven
Development Toolsuite for Distributed Real-time and

Embedded Systems

Aniruddha S. Gokhale
ISIS, Dept. of EECS

Vanderbilt University
Nashville, TN 37235

a.gokhale (at) vanderbilt.edu

Jeffrey G. Gray
Dept. of CIS

University of Alabama at Birmingham
Birmingham, AL 35294

gray (at) cis.uab.edu

Abstract:
Model-driven development (MDD) has been gaining importance as an approach to resolving
lifecycle challenges of large-scale distributed real-time and embedded (DRE) systems (e.g., joint
emergency response systems, avionics, and automotive systems), including design, development,
testing, maintenance and evolution. DRE systems are characterized by their stringent
requirements for quality of service (QoS), such as predictable end-to-end latencies, timeliness and
scalability. Delivering the QoS needs of DRE systems entails the need to configure correctly, fine
tune and provision the infrastructure used to host the DRE systems, which crosscuts different
layers of middleware, operating systems and networks. Addressing these tangled deployment and
configuration concerns of DRE systems requires integrating the principles of Aspect-Oriented
Software Design (AOSD) with MDD.

This paper describes the integration of the C-SAW aspect weaving tool with the CoSMIC MDD
tool suite to resolve the accidental complexities involved in the configuration and deployment of
component middleware-based DRE systems.

1. Challenge Problems

Quality of service (QoS)-enabled component middleware, such as lightweight CORBA
Component Model (CCM) (and to some extent J2EE and .Net for the domains they are used in)
are increasingly being used to develop and control mission-critical, large-scale DRE systems.
Figure 1 illustrates a representative DRE system highlighting a joint emergency response system.
DRE systems share the following characteristics giving rise to tangled concerns in its
development and maintenance lifecycle:

1. Heterogeneity. Large-scale DRE systems often run on a variety of computing platforms

that are interconnected by different types of networking technologies with varying QoS
properties. The efficiency and predictability of DRE systems built using different
infrastructure components varies according to the type of computing platform and
interconnection technology.

2. Deeply embedded properties. DRE systems are frequently composed of multiple
embedded subsystems. For example, an anti-lock braking software control system forms a
resource-constrained subsystem that is part of a larger DRE application controlling the
overall operation of an automobile.

3. Simultaneous support for multiple QoS properties. DRE software controllers are
increasingly replacing mechanical and human control of critical systems. These controllers

must simultaneously support many
challenging QoS constraints,
including (1) real-time
requirements, such as low latency
and bounded jitter, (2) availability
requirements, such as fault
propagation/recovery across
distribution boundaries, (3)
security requirements, such as
appropriate authentication and
authorization, and (4) physical
requirements, such as limited
weight, power consumption, and
memory footprint. For example, a
distributed patient monitoring
system requires predictable,
reliable, and secure monitoring of patient health data that can be distributed in a timely
manner to healthcare providers.

4. Large-scale, network-centric operation. The scale and complexity of DRE systems
makes it infeasible to deploy them in disconnected, standalone configurations. The
functionality of DRE systems is therefore partitioned and distributed over a range of
networks. For example, an urban bio-terrorist evacuation capability requires highly
distributed functionality involving networks connecting command and control centers with
bio-sensors that collect data from police, hospitals, and urban traffic management systems.

5. Dynamic operating conditions. Operating conditions for large-scale DRE systems can
change dynamically, resulting in the need for appropriate adaptation and resource
management strategies for continued successful system operation. In civilian contexts, for
instance, power outages underscore the need to detect failures in a timely manner and adapt
in real-time to maintain mission-critical power grid operations. In military contexts,
likewise, a mission mode change or loss of functionality due to an attack in combat
operations requires adaptation and resource reallocation to continue with mission-critical
capabilities.

2. Concern Separation using Model-Driven Development

MDD technologies, such as the Object Management Group (OMG)’s Model-driven Architecture
(MDA), have emerged to address the different lifecycle challenges of DRE systems outlined
above, which includes satisfying both the functional and QoS needs of DRE systems during
design, development, testing, maintenance, and evolution stages. Figure 2 illustrates how a MDD
tool chain coordinates with design-time analysis tools and run-time infrastructure (such as
middleware, OS and networks) to address DRE system lifecycle challenges described below:

• Specification and implementation, which enables application functionality specification,
partitioning, and implementation as components.

• Packaging, which allows bundling a suite of software binary modules and metadata
representing application components.

• Installation, which involves populating a repository with the packages required by the
application.

• Configuration, which allows configuration of the packages with the appropriate
parameters to satisfy the functional and systemic requirements of application without
constraining to any physical resources.

Figure 1. Sample DRE System

• Planning, which makes appropriate deployment decisions including identifying the
entities, such as CPUs, of the target environment where the packages will be deployed.

• Preparation, which moves the binaries to the identified entities of the target environment.
• Launching, which triggers the installed binaries and brings the application to a ready

state.
• Adaptation, which enables run-time reconfiguration and resource management to

maintain end to-end QoS.

Figure 2 also demonstrates how the various stages of the DRE systems lifecycle are tangled with
different layers of the infrastructure that host the DRE systems. MDD tools in association with
AOSD techniques can assist in untangling the crosscutting concerns at each stage of the DRE
lifecycle, which helps improve productivity and time-to-market.

3. Applying AOSD Principles to MDD Toolsuites
This section showcases how the CoSMIC MDD tool suite is used in conjunction with the C-SAW
model weaver to address the tangled concerns encountered in the DRE system lifecycle. We
briefly describe the two tools and show how we are integrating them to resolve DRE system
lifecycle challenges.

3.1 The CoSMIC MDD Tool suite

The deployment and configuration of middleware typically involves manual modification to
meta-data that is split across multiple XML descriptors. A key evolution and change management

Figure 2: DRE Systems Lifecycle Stages

problem exists because of the inter-dependencies and crosscutting between descriptors, and the
fact that manual modification of large XML files is error-prone.

The Component Synthesis with Model Integrated Computing (CoSMIC) [3] tools (available at
http://www.dre.vanderbilt.edu/cosmic /) are developed using the Generic Modeling Environment
(GME) [6], which is a metamodeling environment that defines the modeling paradigms for each
stage of the CoSMIC tool chain. The CoSMIC MDD toolsuite illustrated in Figure 3 is a
collection of domain-specific modeling languages (DSMLs) and generative tools to address the
concerns at different stages of DRE systems lifecycle shown in Figure 2.

The CoSMIC tools use GME to enforce their “correct by construction” techniques, as opposed to
the “construct by correction” techniques commonly used by post-construction tools, such as
compilers, source-level debuggers, and script validators. CoSMIC ensures that the rules of
construction – and the models constructed according to these rules – can evolve together over
time. Each CoSMIC tool synthesizes metadata in XML for use in the underlying middleware. The
CoSMIC tool suite currently uses a platform-specific model approach that integrates the modeling
technology with QoS-enabled component middleware, such as CIAO [1] (available at
http://www.cs.wustl.edu/~schmidt/CIAO.html). CoSMIC provides the capability to inter work
with third party model checking tools, such as Cadena from Kansas State University [5], and
aspect model weavers, such as C-SAW [4].

3.2 Aspect Weaving at the Modeling Level

We have discovered that many properties and policies within a DRE system (e.g., eager/lazy
evaluation, processor assignment policies, component placement, and QoS policies) crosscut the

Figure 3: CoSMIC MDD Tool suite

Figure 4: Application of C-SAW

model hierarchy and are spread across many locations within a model. These crosscutting
properties represent a common global concern, but their scattering across the model requires
much manual adaptation in order to explore design variations. Extensive manual adaptation
within a modeling tool can be time consuming and an error prone activity. In combination with
CoSMIC, aspect modeling approaches offer relevant benefits of applying aspect-oriented
principles to models in order to better isolate crosscutting concerns. The Constraint-Specification
Aspect Weaver (C-SAW) model weaver (available at http://www.cis.uab.edu/gray/Research/C-
SAW/ and shown in Figure 4) is a general model transformation engine that provides a capability
to describe the essence of a concern and transform a model accordingly. In C-SAW, aspects are
defined at the modeling abstraction level using the Embedded Constraint Language (ECL). C-
SAW provides the ability to assist a modeler in quickly inserting and removing new properties
and policies into a model without the need for extensive manual adaptation.

3.3 Brief Example Application of AOSD in
CoSMIC

EQAL1 (Event Quality Aspect Language) is
a domain-specific modeling language within
CoSMIC that assists in the specification and
configuration of federated event channels
[2]. Figure 4 shows an EQAL model with
three sites. To scale-up an event channel
requires changes to many different model
locations. C-SAW can automate the scaling
task - an ECL strategy specification is used
to scale up any site as well as the
corresponding connections in the EQAL
model. C-SAW takes the original EQAL
model and the ECL specifications, and then
generates the new scaled-up EQAL model
with additional sites. Three steps are
included, as listed below and show in
Listing 1:

• Add extra CORBA_Gateways to the
existing sites

• Repeatedly replicate the site as an
instance

• Create connections between all of the

sites

1 Original name for this tool was FESML but was later subsumed within the EQAL tool

in CoSMIC

//recursively add sites
strategy addSite_r(max,idx: integer)
{
 if (idx <= max) then
 addSite(idx);
 addSite_r(max,idx+1);
 endif;

 rootFolder().findModel("NewGateway_Federation").
 findModel("Site 1").addGateWay_r(max, idx);
}

strategy addSite(idx: integer)
{
 // update NewGateWay_Federation model via adding one Site instance
 rootFolder().findModel("NewGateway_Federation").updateNGF(idx);
}

strategy updateNGF(idx:integer)
{
 declare site, site_ins : object;
 declare id_str : string;

 id_str := intToString(idx);

 // create Site instance
 site := findModel("Site 1");
 site_ins := addInstance("Site", "Site " + id_str, site);
}

strategy addGateWay_r(max, idx: integer)
{
 if (idx<=max) then
 addGateWay();
 addGateWay(max, idx+1);
 endif;
}

strategy addGateWay()
{
 addAtom("CORBA_Gateway", "CORBA_Gateway");
}

Listing 1: ECL Specification to Scale EQAL Model

We have applied the strengths of the C-SAW in a similar fashion to different CoSMIC DSMLs.
For example, we have used C-SAW to scale the models of component assemblies and packages
that are modeled using CoSMIC’s PICML tool, and are currently exploring its use to define other
crosscutting concerns, such as configuring the component middleware’s container QoS policies,
or the component collocation and placement strategies.

4. Conclusions
This paper illustrates the tangling of concerns in the deployment and configuration of distributed
real-time and embedded systems. Model driven generative technologies help address these
concerns by alleviating several accidental complexities arising in the modeling process. Yet,
MDD tools alone are not sufficient since they cannot scale in some cases. Additionally, some of

the modeling activities can become tedious and repetitive while addressing crosscutting concerns.
Aspect weaving at the modeling level resolves these problems. This paper describes ongoing
work along with a short case study on integrating the C-SAW aspect weaving tool with the
CoSMIC model driven development tool suite. All the tools described in this paper are available
for download at the web sites referenced in the paper.

References:
1. Component Integrated ACE ORB, http://www.cs.wustl.edu/~schmidt/CIAO.html
2. Gan Deng, Aniruddha Gokhale and Balachandran Natarajan, “Model-Driven Integration of Federated

Event Services in Real-Time Component Middleware,” Proceedings of the 42nd ACM Southeast
Conference, Huntsville, AL, April 2-3, 2004, pp. 353-356.

3. Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor Wang,
“Model-Driven Middleware,” in Middleware for Communications, (Qusay Mahmoud, ed.), John Wiley
and Sons, 2004, Chapter 7, pp. 163-187.

4. Gray, J., Bapty, T., Neema, S., and Tuck, J., “Handling Crosscutting Constraints in Domain-Specific
Modeling,” Communications of the ACM, October 2001, pp. 87-93.

5. John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, Venkatesh Prasad Ranganath, “Cadena:
An Integrated Development, Analysis, and Verification Environment for Component-based Systems,”
Proceedings of the 2003 International Conference on Software Engineering (ICSE 2003), Portland,
Oregon, May 2003, pp. 160-173.

6. Lédeczi Á., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J., Karsai G , “Composing
Domain-Specific Design Environments,” IEEE Computer, November 2001, pp. 44-51.

