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Abstract 
 

Model-Driven Software Engineering (MDSE) is 
gaining increased adoption in the development of 
computer-based systems, especially in the area of 
distributed real-time and embedded (DRE) domains. 
There is also potential to apply MDSE to assist in the 
evolution of large enterprise legacy systems. However, 
the state-of-the-art MDSE techniques still lack support 
for advanced processes and constructive methods 
involved within the context of the development and 
evolution of software systems. This paper outlines our 
position on what is needed to provide a generative 
approach to support legacy system evolution with 
MDSE. A prototype of the Model-Driven Program 
Transformation (MDPT) technique has been 
implemented to perform large scale adaptation of 
legacy source code from transformation rules that are 
driven by the evolving features of the corresponding 
domain models. 
 
1. Introduction 
 

Model-Driven Software Engineering (MDSE) 
techniques are being adopted with more frequency in 
the development of computer based systems (CBS), 
especially in the domain of embedded control software 
(e.g., avionics and automotive control systems). Meta-
configurable domain-specific modeling environments 
[6] [8] provide support for customization of modeling 
tools that enable domain experts to construct models in 
notations that are familiar to them. Such tools typically 
offer the ability to generate, or synthesize various 
artifacts from models (e.g., synthesis of input to 
analysis tools, or generation of source code from the 
models). This is accomplished by a model interpreter 
whose purpose is to traverse the internal representation 
of a model and generate new artifacts (e.g., XML 
configuration files, source code, or even hardware 

logic). The ability to describe properties of a system at 
a higher abstraction level, and in a technology-
independent notation, can protect key intellectual 
assets from technology obsolescence. Domain-specific 
modeling also supports rapid evolution of computer-
based systems when the hardware and software 
configuration is tightly coupled, but must frequently 
evolve to a new configuration schema (e.g., retooling 
in an automotive factory or reconfiguration of an 
avionics product-line) [11]. 

Likewise, MDSE has the potential for broad impact 
when applied to the evolution and maintenance tasks of 
legacy software systems. However, the state-of-the-art 
MDSE techniques still lack support for advanced 
processes and constructive methods involved within 
the context of the development and evolution of 
software systems. 

This paper asserts our position on the key 
challenges that need to be solved in order to 
fundamentally advance the capabilities offered by 
MDSE to support legacy software evolution. The paper 
describes a Model-Driven Program Transformation 
(MDPT) technique to perform large scale adaptation of 
legacy source from transformation rules that are 
generated from the evolving features of the 
corresponding domain models. The paper outlines a 
few of the challenges of providing model-driven legacy 
evolution, as well as a proposed solution technique 
with our initial results. 

 
2. Technical Challenges 
 

Legacy systems affect many aspects of our daily 
lives (e.g., software to control commercial transaction 
systems, defense systems, or even healthcare systems). 
As noted in [12], “any application system that is 
functioning in a production environment within an 
enterprise can be considered as a legacy system.” With 
increasing demands to evolve and maintain such 



systems, future requirements will necessitate new 
strategies to support the requisite adaptations across 
different software artifacts. 

Transformation of legacy software has many well-
known technical obstacles [12]. With respect to model-
driven evolution, the majority of MDSE tools are well-
equipped to generate and synthesize new software 
artifacts. However, support for parsing and invasively 
transforming legacy source code from higher-level 
models is not well-represented in the research 
literature. This is because of the following three 
challenges: 
 
1. It is often the case that even a slight change in the 

system requirements would necessitate extensive 
modifications that are widely spread over a large 
section of the source code. With the MDSE 
approach, this situation can be mitigated by 
providing a meta-configurable domain-specific 
modeling environment that is customized for the 
domain experts so that they are able to manipulate 
the system at a higher-level of abstraction, instead 
of the low-level source code. The desired result is 
to achieve modularization such that a change in a 
design decision is isolated to one location within 
the model. However, this approach alone cannot 
solve the problem because small changes in the 
models might still necessitate drastic changes 
throughout the source code. The question remains 
as to how the underlying existing legacy source is 
to be modified from the models. It is one of the 
key challenges for MDSE to maintain the fidelity 
between the mapping of model properties and the 
corresponding source code. 

2. Many legacy systems are usually large (e.g., 
hundreds of thousands, or even millions, of lines 
of source code) and represented by a variety of 
programming languages. In order to transform 
such diverse systems, different parsers are needed 
for each language. In addition, if support for a new 
language is required, an individual new parser for 
this particular language must be necessarily 
included in the transformation toolsuite. 
Developing industrial-scale parsers to support all 
languages, and integrating them within the 
modeling tool, is really time-consuming (if not 
unfeasible). 

3. Even if a mature parser is available and applicable 
for handling all of the languages in the underlying 
source, a full-blown program transformation 
engine is also required in order to perform the 
invasive [1] adaptations to the large legacy source 
base. This is also an arduous task. 

 

Figure 1 illustrates legacy system evolution in terms 
of models and the corresponding source code. This 
figure represents the concept that was originally termed 
a maintenance delta by Baxter in [2]. Generally 
speaking, a meta-model defines the valid concepts and 
rules for constructing a model in a specific domain. 
The meta-model is relatively stable and seldom 
changes during the process of the system evolution; 
however, the meta-model may need modifications or 
extension if it cannot represent concepts described in 
new system requirements. The legacy models are 
dependent on the meta-models and describe the 
specific designs/requirements of the underlying legacy 
system.  

During the evolution process of a legacy system, 
there may exist some difference, ∆M, between the old 
models and the new ones, which capture additional 
system requirements. Additionally, ∆M should 
correspond to the difference (represented by ∆S) 
between the original source code and the adaptations 
needed to update the legacy code. However, 
conventional model-driven techniques are inadequate 
for maintaining the consistency between a design 
model and the corresponding program code in the case 
of invasive changes to legacy code. Naturally, a robust 
program transformation mechanism is needed as the 
“bridge” to enforce the conformity between models 
and code. Although program transformation systems 
have been under development for several decades, 
there is little investigation into the merging of mature 
transformation systems within model-driven tool-
suites. 
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Figure 1. The evolution of the legacy system in 
terms of models and source code 



3. Model-Driven Program Transformation 
 

With respect to the three challenges enumerated in 
the previous section, we have been investigating the 
feasibility of utilizing the power of a mature program 
transformation system to support parsing and source-
level transformation of legacy code. We provide a 
generative approach [4] to enforce a causal connection 
between models and the corresponding legacy source 
through an approach that we call model-driven 
program transformation (MDPT). A causal connection 
occurs whenever any modifications are made to the 
models, such that there are some accordant changes 
applied to the source code. 

An overview of the concept for model-driven 
program transformation is shown in Figure 2. In our 
initial experiment, domain models are represented in 
the Generic Modeling Environment (GME) [9]. The 
GME is a domain-specific modeling tool that provides 
meta-modeling capabilities to configure the instance 
models from the meta-level specifications. Our 
approach synergistically extends the GME modeling 
process by incorporating the Design Maintenance 
System (DMS) [3] as the underlying program 
transformation engine. The core component of DMS is 
an Abstract Syntax Tree (AST) term rewriting engine 
that supports powerful capabilities for pattern matching 
and source transformation. DMS provides pre-
constructed domains for several dozen languages (32 
languages were supported at the time of our 
experimentation). These domains are very mature and 

have been used to parse several million lines of code in 
various domains. Furthermore, an important feature of 
DMS is the source-to-source transformation rules that 
can be applied to modify a large cross-section of a 
code base. 

In the MDPT approach, the key contribution is to 
construct domain-specific model interpreters that are 
able to make the comparison between the old and new 
models and then produce the DMS transformation 
rules from the evolving features of GME models, i.e., 
generate the legacy source-to-source transformation 
delta (represented by ∆S in Figure 1) according to the 
model-to-model transformation delta (represented by 
∆M). Therefore, the changes made in the models and 
the resulting generated transformation rules are one-to-
one mappings. The corresponding legacy source code, 
along with the generated transformation rules, serves 
as the input to the underlying DMS engine. As a result, 
the legacy source programs will be modified and 
adapted to the new requirements that are reflected in 
the model changes. 

It is worth noting that the domain experts are not 
required to understand the complicated DMS 
transformation rules. Domain experts modify the 
domain-specific models according to any new 
requirements for the system. After that, the 
transformation rules will be generated automatically. 
As a consequence, the legacy source code will be 
transformed into a new version. The whole process is 
transparent and auto-driven by the MDPT model 
interpreters. Detailed examples of the rules generated 
by the model interpreters can be found in [6]. 

Figure 2. Overview of Model-Driven Program Transformation 
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void BM__PushPullComponentImpl::Update (const UUEventSet& events) 
{     
   BM__ComponentInstrumentation::EventConsumer(GetId(), "Update", events); 
   unsigned int tempData1 = GetId().GetGroupId(); 
   unsigned int tempData2 = GetId().GetItemId(); 
   
   for (; devIter != endIter; ++devIter) 
   { 
      BM__ClosedComponent* component = *devIter; 
      const UUIdentifier& id = component->GetId(); 
      if (idInEventSet(id, events)) 
      { 
         const BM__ClosedFunctionalFacet& facet = component->ProvideClosedFunctionalFacet();           
         BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), GetData1"); 
         tempData1 += facet.GetData1();             
         BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData2"); 
         tempData2 += facet.GetData2(); 
      } 
   } 
   data1_ = tempData1; 
   data2_ = tempData2; 
} 

Transformed 
Legacy Code 

void BM__PushPullComponentImpl::Update (const UUEventSet& events)
{ 
   UM__GUARD_EXTERNAL_REGION(GetExternalPushLock());       
   BM__ComponentInstrumentation::EventConsumer(GetId(), "Update", events);  
   unsigned int tempData1 = GetId().GetGroupId(); 
   unsigned int tempData2 = GetId().GetItemId();  
    for (; devIter != endIter; ++devIter) 
   { 
      BM__ClosedComponent* component = *devIter;  const UUIdentifier& id = component->GetId();  
      if (idInEventSet(id, events)) 
      { 
         const BM__ClosedFunctionalFacet& facet = component->ProvideClosedFunctionalFacet();           
         BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData1"); 
         tempData1 += facet.GetData1();             
         BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData2"); 
         tempData2 += facet.GetData2(); 
      }   }       
  UM__GUARD_INTERNAL_REGION; 
  log.add(“data1_=”+data1_); 
   data1_ = tempData1; 
   data2_ = tempData2;    
  log.add(“data2_=”+data2_); 
} 

GME Models 
DMS Xform 

Rules
default base domain Cpp~VisualCpp6. 
pattern 
UM_GUARD_EXTERNAL_REGION_as_identifier_or_template_i
d(): identifier_or_template_id = 
"UM__GUARD_EXTERNAL_REGION". 
pattern GetExternalPushLock_as_identifier_or_template_id():  
identifier_or_template_id = "GetExternalPushLock". 
pattern ExternalLockStmt(): expression_statement = 
"\UM_GUARD_EXTERNAL_REGION_as_identifier_or_template
_id\(\)(\GetExternalPushLock_as_identifier_or_template_id\(\)());".  
pattern External_pattern(id:identifier): qualified_id = "\id :: Update". 
pattern ExternalLockAspect(s: statement_seq): statement_seq = 
"\ExternalLockStmt\(\)   { \s } ". 
rule insert_external_lock( id:identifier, 
p:parameter_declaration_clause, s: statement_seq): 
function_definition -> function_definition 
    = "void \External_pattern\(\id\) (\p) { \s } " -> "void 
\External_pattern\(\id\) (\p) { \ExternalLockAspect\(\s\) }"     
   if ~[modsList:statement_seq .s matches "\:statement_seq 
\ExternalLockAspect\(\modsList\)"]. 
  public ruleset applyrules = 
  {    insert_external_lock 
  }. 

Interpreter 
   GENERATE



The intrinsic benefit of this approach is large-scale 
adaptation across multiple source files that are driven 
by model properties. Such adaptation can be 
accomplished through minimal changes to the models. 
Such super-linearity is at the heart of the abstraction 
power provided by model-driven techniques [5]. 

Figure 3 visualizes the generalization of the process 
for supporting the MDPT approach. The gray squared 
areas indicate manual tasks that need to be performed 
to add new adaptation strategies within a model 
interpreter for a specific meta-model. The following 
three steps are involved: 
• The system developers define and analyze the new 

requirements for the legacy system. If the current 
meta-model does not provide the proper concepts 
and notations to specify the new concern of 
interest, it has to be modified or extended to 

include the additional modeling concepts to support 
the new requirements. Developers then modify or 
extend the models based on the appropriate meta-
model (a separate topic that also has received 
recent attention [10]). The resulting models reflect 
the evolving features of the system requirements. 

• Meanwhile, the system transformers make 
modifications or extensions to the current MDPT 
model interpreter according to the new 
requirements specified by the developers. The 
updated interpreter is empowered to generate the 
corresponding DMS transformation rules for the 
new system concerns. 

• As the system evolution is performed, the modified 
models are processed by the new MDPT 
interpreter. Finally, legacy source is transformed by 
DMS through the generated transformation rules. 

Figure 3. Generalization of the control flow for the MDPT process 



4. Current Status and Future Work 
 

An initial experiment was conducted to evaluate the 
feasibility of the MDPT approach. A model interpreter 
was developed to generate the program transformation 
rules needed to perform widespread source 
transformation of a large legacy avionics system 
consisting of over several millions lines of C++ source 
code. The transformation process provides adaptation 
based on Quality of Service (QoS) policies specified in 
the models, such as concurrency control patterns and 
state management. We selected a subset of this system 
and applied adaptations across hundreds of files that 
were successfully parsed and transformed in 
accordance with changes made in the representative 
models. For more technical details, please see [7]. Our 
initial investigation and associated prototype, however, 
is tailored to a specific domain with limited 
opportunity for extension. The future work will focus 
on the generalization of the process for supporting 
legacy system evolution through MDPT. Experimental 
studies will be designed to evaluate the results of this 
research using well-defined metrics to compare manual 
efforts with the proposed approaches. 

The software, publications, and several video 
demonstrations related to this research can be obtained 
at http://www.gray-area.org/Research/C-SAW. 
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