
Legacy System Evolution through
Model-Driven Program Transformation

Jing Zhang and Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, Alabama, USA
{zhangj, gray} @ cis.uab.edu

Abstract

Model-Driven Software Engineering (MDSE) is
gaining increased adoption in the development of
computer-based systems, especially in the area of
distributed real-time and embedded (DRE) domains.
There is also potential to apply MDSE to assist in the
evolution of large enterprise legacy systems. However,
the state-of-the-art MDSE techniques still lack support
for advanced processes and constructive methods
involved within the context of the development and
evolution of software systems. This paper outlines our
position on what is needed to provide a generative
approach to support legacy system evolution with
MDSE. A prototype of the Model-Driven Program
Transformation (MDPT) technique has been
implemented to perform large scale adaptation of
legacy source code from transformation rules that are
driven by the evolving features of the corresponding
domain models.

1. Introduction

Model-Driven Software Engineering (MDSE)
techniques are being adopted with more frequency in
the development of computer based systems (CBS),
especially in the domain of embedded control software
(e.g., avionics and automotive control systems). Meta-
configurable domain-specific modeling environments
[6] [8] provide support for customization of modeling
tools that enable domain experts to construct models in
notations that are familiar to them. Such tools typically
offer the ability to generate, or synthesize various
artifacts from models (e.g., synthesis of input to
analysis tools, or generation of source code from the
models). This is accomplished by a model interpreter
whose purpose is to traverse the internal representation
of a model and generate new artifacts (e.g., XML
configuration files, source code, or even hardware

logic). The ability to describe properties of a system at
a higher abstraction level, and in a technology-
independent notation, can protect key intellectual
assets from technology obsolescence. Domain-specific
modeling also supports rapid evolution of computer-
based systems when the hardware and software
configuration is tightly coupled, but must frequently
evolve to a new configuration schema (e.g., retooling
in an automotive factory or reconfiguration of an
avionics product-line) [11].

Likewise, MDSE has the potential for broad impact
when applied to the evolution and maintenance tasks of
legacy software systems. However, the state-of-the-art
MDSE techniques still lack support for advanced
processes and constructive methods involved within
the context of the development and evolution of
software systems.

This paper asserts our position on the key
challenges that need to be solved in order to
fundamentally advance the capabilities offered by
MDSE to support legacy software evolution. The paper
describes a Model-Driven Program Transformation
(MDPT) technique to perform large scale adaptation of
legacy source from transformation rules that are
generated from the evolving features of the
corresponding domain models. The paper outlines a
few of the challenges of providing model-driven legacy
evolution, as well as a proposed solution technique
with our initial results.

2. Technical Challenges

Legacy systems affect many aspects of our daily
lives (e.g., software to control commercial transaction
systems, defense systems, or even healthcare systems).
As noted in [12], “any application system that is
functioning in a production environment within an
enterprise can be considered as a legacy system.” With
increasing demands to evolve and maintain such

systems, future requirements will necessitate new
strategies to support the requisite adaptations across
different software artifacts.

Transformation of legacy software has many well-
known technical obstacles [12]. With respect to model-
driven evolution, the majority of MDSE tools are well-
equipped to generate and synthesize new software
artifacts. However, support for parsing and invasively
transforming legacy source code from higher-level
models is not well-represented in the research
literature. This is because of the following three
challenges:

1. It is often the case that even a slight change in the

system requirements would necessitate extensive
modifications that are widely spread over a large
section of the source code. With the MDSE
approach, this situation can be mitigated by
providing a meta-configurable domain-specific
modeling environment that is customized for the
domain experts so that they are able to manipulate
the system at a higher-level of abstraction, instead
of the low-level source code. The desired result is
to achieve modularization such that a change in a
design decision is isolated to one location within
the model. However, this approach alone cannot
solve the problem because small changes in the
models might still necessitate drastic changes
throughout the source code. The question remains
as to how the underlying existing legacy source is
to be modified from the models. It is one of the
key challenges for MDSE to maintain the fidelity
between the mapping of model properties and the
corresponding source code.

2. Many legacy systems are usually large (e.g.,
hundreds of thousands, or even millions, of lines
of source code) and represented by a variety of
programming languages. In order to transform
such diverse systems, different parsers are needed
for each language. In addition, if support for a new
language is required, an individual new parser for
this particular language must be necessarily
included in the transformation toolsuite.
Developing industrial-scale parsers to support all
languages, and integrating them within the
modeling tool, is really time-consuming (if not
unfeasible).

3. Even if a mature parser is available and applicable
for handling all of the languages in the underlying
source, a full-blown program transformation
engine is also required in order to perform the
invasive [1] adaptations to the large legacy source
base. This is also an arduous task.

Figure 1 illustrates legacy system evolution in terms
of models and the corresponding source code. This
figure represents the concept that was originally termed
a maintenance delta by Baxter in [2]. Generally
speaking, a meta-model defines the valid concepts and
rules for constructing a model in a specific domain.
The meta-model is relatively stable and seldom
changes during the process of the system evolution;
however, the meta-model may need modifications or
extension if it cannot represent concepts described in
new system requirements. The legacy models are
dependent on the meta-models and describe the
specific designs/requirements of the underlying legacy
system.

During the evolution process of a legacy system,
there may exist some difference, ∆M, between the old
models and the new ones, which capture additional
system requirements. Additionally, ∆M should
correspond to the difference (represented by ∆S)
between the original source code and the adaptations
needed to update the legacy code. However,
conventional model-driven techniques are inadequate
for maintaining the consistency between a design
model and the corresponding program code in the case
of invasive changes to legacy code. Naturally, a robust
program transformation mechanism is needed as the
“bridge” to enforce the conformity between models
and code. Although program transformation systems
have been under development for several decades,
there is little investigation into the merging of mature
transformation systems within model-driven tool-
suites.

Legacy
Source

Legacy
Models

Legacy
Models’

Meta-model

Defines

Legacy
Source’

Defines

Describe

∆M

∆S

Describe

∆M: The changes made to the legacy models
∆S: The changes reflected in the legacy source

Figure 1. The evolution of the legacy system in
terms of models and source code

3. Model-Driven Program Transformation

With respect to the three challenges enumerated in
the previous section, we have been investigating the
feasibility of utilizing the power of a mature program
transformation system to support parsing and source-
level transformation of legacy code. We provide a
generative approach [4] to enforce a causal connection
between models and the corresponding legacy source
through an approach that we call model-driven
program transformation (MDPT). A causal connection
occurs whenever any modifications are made to the
models, such that there are some accordant changes
applied to the source code.

An overview of the concept for model-driven
program transformation is shown in Figure 2. In our
initial experiment, domain models are represented in
the Generic Modeling Environment (GME) [9]. The
GME is a domain-specific modeling tool that provides
meta-modeling capabilities to configure the instance
models from the meta-level specifications. Our
approach synergistically extends the GME modeling
process by incorporating the Design Maintenance
System (DMS) [3] as the underlying program
transformation engine. The core component of DMS is
an Abstract Syntax Tree (AST) term rewriting engine
that supports powerful capabilities for pattern matching
and source transformation. DMS provides pre-
constructed domains for several dozen languages (32
languages were supported at the time of our
experimentation). These domains are very mature and

have been used to parse several million lines of code in
various domains. Furthermore, an important feature of
DMS is the source-to-source transformation rules that
can be applied to modify a large cross-section of a
code base.

In the MDPT approach, the key contribution is to
construct domain-specific model interpreters that are
able to make the comparison between the old and new
models and then produce the DMS transformation
rules from the evolving features of GME models, i.e.,
generate the legacy source-to-source transformation
delta (represented by ∆S in Figure 1) according to the
model-to-model transformation delta (represented by
∆M). Therefore, the changes made in the models and
the resulting generated transformation rules are one-to-
one mappings. The corresponding legacy source code,
along with the generated transformation rules, serves
as the input to the underlying DMS engine. As a result,
the legacy source programs will be modified and
adapted to the new requirements that are reflected in
the model changes.

It is worth noting that the domain experts are not
required to understand the complicated DMS
transformation rules. Domain experts modify the
domain-specific models according to any new
requirements for the system. After that, the
transformation rules will be generated automatically.
As a consequence, the legacy source code will be
transformed into a new version. The whole process is
transparent and auto-driven by the MDPT model
interpreters. Detailed examples of the rules generated
by the model interpreters can be found in [6].

Figure 2. Overview of Model-Driven Program Transformation

Common/Project
Library of Legacy

Source Code

void BM__PushPullComponentImpl::Update (const UUEventSet& events)
{
 BM__ComponentInstrumentation::EventConsumer(GetId(), "Update", events);
 unsigned int tempData1 = GetId().GetGroupId();
 unsigned int tempData2 = GetId().GetItemId();

 for (; devIter != endIter; ++devIter)
 {
 BM__ClosedComponent* component = *devIter;
 const UUIdentifier& id = component->GetId();
 if (idInEventSet(id, events))
 {
 const BM__ClosedFunctionalFacet& facet = component->ProvideClosedFunctionalFacet();
 BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), GetData1");
 tempData1 += facet.GetData1();
 BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData2");
 tempData2 += facet.GetData2();
 }
 }
 data1_ = tempData1;
 data2_ = tempData2;
}

Transformed
Legacy Code

void BM__PushPullComponentImpl::Update (const UUEventSet& events)
{
 UM__GUARD_EXTERNAL_REGION(GetExternalPushLock());
 BM__ComponentInstrumentation::EventConsumer(GetId(), "Update", events);
 unsigned int tempData1 = GetId().GetGroupId();
 unsigned int tempData2 = GetId().GetItemId();
 for (; devIter != endIter; ++devIter)
 {
 BM__ClosedComponent* component = *devIter; const UUIdentifier& id = component->GetId();
 if (idInEventSet(id, events))
 {
 const BM__ClosedFunctionalFacet& facet = component->ProvideClosedFunctionalFacet();
 BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData1");
 tempData1 += facet.GetData1();
 BM__ComponentInstrumentation::SendDirectCall(GetId(), "Update", component->GetId(), "GetData2");
 tempData2 += facet.GetData2();
 } }
 UM__GUARD_INTERNAL_REGION;
 log.add(“data1_=”+data1_);
 data1_ = tempData1;
 data2_ = tempData2;
 log.add(“data2_=”+data2_);
}

GME Models
DMS Xform

Rules
default base domain Cpp~VisualCpp6.
pattern
UM_GUARD_EXTERNAL_REGION_as_identifier_or_template_i
d(): identifier_or_template_id =
"UM__GUARD_EXTERNAL_REGION".
pattern GetExternalPushLock_as_identifier_or_template_id():
identifier_or_template_id = "GetExternalPushLock".
pattern ExternalLockStmt(): expression_statement =
"\UM_GUARD_EXTERNAL_REGION_as_identifier_or_template
_id\(\)(\GetExternalPushLock_as_identifier_or_template_id\(\)());".
pattern External_pattern(id:identifier): qualified_id = "\id :: Update".
pattern ExternalLockAspect(s: statement_seq): statement_seq =
"\ExternalLockStmt\(\) { \s } ".
rule insert_external_lock(id:identifier,
p:parameter_declaration_clause, s: statement_seq):
function_definition -> function_definition
 = "void \External_pattern\(\id\) (\p) { \s } " -> "void
\External_pattern\(\id\) (\p) { \ExternalLockAspect\(\s\) }"
 if ~[modsList:statement_seq .s matches "\:statement_seq
\ExternalLockAspect\(\modsList\)"].
 public ruleset applyrules =
 { insert_external_lock
 }.

Interpreter
 GENERATE

The intrinsic benefit of this approach is large-scale
adaptation across multiple source files that are driven
by model properties. Such adaptation can be
accomplished through minimal changes to the models.
Such super-linearity is at the heart of the abstraction
power provided by model-driven techniques [5].

Figure 3 visualizes the generalization of the process
for supporting the MDPT approach. The gray squared
areas indicate manual tasks that need to be performed
to add new adaptation strategies within a model
interpreter for a specific meta-model. The following
three steps are involved:
• The system developers define and analyze the new

requirements for the legacy system. If the current
meta-model does not provide the proper concepts
and notations to specify the new concern of
interest, it has to be modified or extended to

include the additional modeling concepts to support
the new requirements. Developers then modify or
extend the models based on the appropriate meta-
model (a separate topic that also has received
recent attention [10]). The resulting models reflect
the evolving features of the system requirements.

• Meanwhile, the system transformers make
modifications or extensions to the current MDPT
model interpreter according to the new
requirements specified by the developers. The
updated interpreter is empowered to generate the
corresponding DMS transformation rules for the
new system concerns.

• As the system evolution is performed, the modified
models are processed by the new MDPT
interpreter. Finally, legacy source is transformed by
DMS through the generated transformation rules.

Figure 3. Generalization of the control flow for the MDPT process

4. Current Status and Future Work

An initial experiment was conducted to evaluate the
feasibility of the MDPT approach. A model interpreter
was developed to generate the program transformation
rules needed to perform widespread source
transformation of a large legacy avionics system
consisting of over several millions lines of C++ source
code. The transformation process provides adaptation
based on Quality of Service (QoS) policies specified in
the models, such as concurrency control patterns and
state management. We selected a subset of this system
and applied adaptations across hundreds of files that
were successfully parsed and transformed in
accordance with changes made in the representative
models. For more technical details, please see [7]. Our
initial investigation and associated prototype, however,
is tailored to a specific domain with limited
opportunity for extension. The future work will focus
on the generalization of the process for supporting
legacy system evolution through MDPT. Experimental
studies will be designed to evaluate the results of this
research using well-defined metrics to compare manual
efforts with the proposed approaches.

The software, publications, and several video
demonstrations related to this research can be obtained
at http://www.gray-area.org/Research/C-SAW.

5. Acknowledgement

This work is supported by the DARPA Information
Exploitation Office (DARPA/IXO), under the Program
Composition for Embedded Systems (PCES) program.

6. References

[1] U. Aßmann, Invasive Software Composition, Springer-

Verlag, 2003.

[2] I. Baxter, “Design Maintenance Systems,”

Communications of the ACM, 1992, pp. 73-89.

[3] I. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program

Transformation for Practical Scalable Software
Evolution,” International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004,
pp. 625-634.

[4] K. Czarnecki and U. Eiseneker, Generative

Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[5] J. Gray, J. Sztipanovits, D. Schmidt, T. Bapty, S.
Neema, and A. Gokhale, “Two-level Aspect Weaving to
Support Evolution of Model-Driven Synthesis,” Aspect-
Oriented Software Development, Addison-Wesley,
2004, Chapter 30.

[6] J. Gray, J. Tolvanen, and M. Rossi, guest editors,

“Special Issue: Domain-Specific Modeling with Visual
Languages,” Journal of Visual Languages and
Computing, Volume 15, Issues 3-4, June/August 2004,
pp. 207-209.

[7] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H. Wu, R.

Sudarsan, A. Gokhale, S. Neema, F. Shi, and T. Bapty,
“Model-Driven Program Transformation of a Large
Avionics Framework,” Generative Programming and
Component Engineering (GPCE 2004), Springer-Verlag
LNCS, Vancouver, BC, October 2004.

[8] G. Karsai, M. Maroti, Á. Lédeczi, J. Gray, and J.

Sztipanovits, “Composition and Cloning in Modeling
and Meta-Modeling,” IEEE Transactions on Control
System Technology (special issue on Computer
Automated Multi-Paradigm Modeling), March 2004, pp.
263-278.

[9] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G.

Nordstrom, J. Sprinkle, and G. Karsai, “Composing
Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

[10] J. Sprinkle and G. Karsai, “A Domain-Specific Visual

Language for Domain Model Evolution,” Journal of
Visual Languages and Computing, vol. 15, no. 3-4,
June-August, 2004, (Edited by J. Gray, M. Rossi, J.-P.
Tolvanen), pp. 291-307.

[11] J. Sztipanovits, “Generative Programming for

Embedded Systems,” Keynote Address: Generative
Programming and Component Engineering (GPCE),
LNCS 2487, Pittsburgh, Pennsylvania, October 2002,
pp. 32-49.

[12] W. Ulrich, Legacy Systems: Transformation Strategies,

Prentice-Hall, 2002.

