
Generating a Generator

Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
gray (at) cis.uab.edu http://www.gray-area.org

Abstract. This brief paper describes future extensions to a framework that supports the
creation of aspect weavers for domain modeling. The current implementation of the
weaver framework is tied to a specific modeling tool. The two framework extensions
outlined here will provide the variability needed to use the weaver with other
metamodeling tools. A key to this future work will be the generation of a generator from
an XML DTD or schema.

1. Introduction

The Generic Modeling Environment (GME) is a metamodeling tool that has been under development for
over a decade at Vanderbilt University’s Institute for Software Integrated Systems (ISIS) [9]. The GME
provides the ability to build domain-specific modeling environments from a metalevel specification of the
domain [7]. Once a tailored GME environment has been created, models are constructed using idioms and
visual representations that are peculiar to a particular domain. Domain-specific interpreters are also created
that can synthesize the domain models into other artifacts (e.g., source code, VHDL, FPGA’s).

It is often the case that the domain metamodel forces the emergence of a dominant decomposition [10] that
imposes the subjugation of other concerns. It has been observed that some properties of a domain-specific
model are crosscutting [4]. That is, a single concern (e.g., latency or power in a real-time system) is
scattered throughout the model in many different locations. Modifications to a crosscutting concern require
a modeler to visit each location that contains the concern and make manual modifications – a difficult, if
not impossible, task for anything but a simple model.

To provide better modularization and separation for crosscutting modeling concerns, a combination of an
aspect-oriented [6] and generative programming [2] approach was applied to domain modeling within the
GME (please see [4, 5] for more details). The solution provides a metaweaver framework that supports the
creation of new weavers for each domain (see Figure 1). To provide an instantiation of the framework,
domain-specific strategies are written to specify heuristics for each particular domain. The Embedded
Constraint Language (ECL) was developed to provide the capability to navigate a model and specify
transformations used in strategies. As shown in Figure 1, a code generator translates the ECL specifications
into C++ code that is then compiled for each weaver instance. Once a new weaver is created, modelers can
then modularize concerns by writing specification aspects. A specification aspect supplies the capability
needed to properly separate crosscutting concerns.

The intent of the framework is to provide variability for different domains. That is, it gives the benefit of
being able to generate new weavers for each new domain. However, the two main components of the
framework (StratGen and the XML Parser) are very much coupled to the GME tool. It would be interesting
to explore the possibilities of applying weaving to models created from other modeling tools. The rest of
this paper describes two additional degrees of variability that will be explored in order to make domain
weaving available from within other tools.

Figure 1: Metaweaver Framework

2. Variability with Respect to Modeling Tools

The current incarnation of the weaver assumes that the separation of modeling concerns is being performed
on models created with the GME. In fact, this assumption is built into the XML Parser that was shown in
Figure 1. The limitation imposed by this assumption precludes other modeling tools (that also can export
models using XML) from being able to employ the benefits of an aspect model weaver. In addition to the
GME, other examples of domain-specific visual modeling tools are Honeywell’s Domain Modeling
Environment [3], and metaEdit+ (from metaCASE) [11]. It is possible that these, and other modeling tools
(such as Ptolemy, from UC Berkeley [8]) and notations (such as an XML representation for EXPRESS [1]),
could benefit from an aspect-oriented modeling approach.

Figure 2 illustrates the manner in which a new code generator could be inserted into the metaweaver
framework in order to provide an added measure of variability. From the modeling tool’s Document Type
Definition (DTD), the functionality of the DOM wrappers provided within the XML Parser can be
generated. For example, the ECL provides several reflective operators that allow details of a model to be
obtained from within a strategy or specification aspect (examples of such operators would be findModel,
findAtom, and findAttribute). These reflective operators are actually implemented as wrappers
within the XML Parser.

The details of the implementation of the XML Parser reveal that it is tightly coupled to the DTD that GME
uses during the import and export of models. A subset of the GME DTD is shown in Figure 3. That figure
specifies the definition of GME models, atoms, and attributes. The definition of other modeling entities
(e.g., connections and references, among others) would be specified similarly. Other tools, where the DTD
may not contain modeling elements called “model,” “atom,” or “attribute” would require different adapters
for accessing the XML DOM.

Strategy
Code Generator

Strategies (C++)

ifexpr > [ClIfExpr* res] :
 <<
 ClExpr *_condE;
 ClExprList* _thenExprs = new ClExprList;
 ClExprList* _elseExprs = new ClExprList;
 ClAction* _postThen = nil;
 ClAction* _postElse = nil;
>>
IF cexpr > [_condE]
 THEN cexprs [_thenExprs] { action > [_postThen] }
 { ELSE cexprs [_elseExprs] { action > [_postElse] } }
 ENDIF
<< $res = new ClIfExpr(_condE, _thenExprs, _elseExprs, _postThen, _postElse); >>
;

Strategy Specifications

Specification Aspects

XML
(Model Hierarchy)

XML

Parser Parser

Aspect
ifexpr > [ClIfExpr* res] :
 <<
 ClExpr *_condE;
 ClExprList* _thenExprs = new ClExprList;
 ClExprList* _elseExprs = new ClExprList;
 ClAction* _postThen = nil;
 ClAction* _postElse = nil;
>>
IF cexpr > [_condE]
 THEN cexprs [_thenExprs] { action > [_postThen] }
 { ELSE cexprs [_elseExprs] { action > [_postElse] } }
 ENDIF
<< $res = new ClIfExpr(_condE, _thenExprs, _elseExprs, _postThen, _postElse); >>
;

Figure 2: Variability with Respect to Modeling Tool

Given the XML element definitions from the Figure 3, there is a straightforward mapping to many of the
XML Parser methods. A few such methods are listed in Figure 4. Throughout the code listing in that figure,
it can be observed quite easily that the element definitions from the DTD have greatly influenced the
methods defined in the XML Parser (to see this, just look through the source in Figure 4 for strings like
“model,” “atom,” and “id”). Similar routines could be generated from the metalevel definition (found in the
DTD) of other modeling tools that use XML for model persistence.

<!ELEMENT model (name, (constraint|attribute|model|atom|reference|set
 connection)*)>
<!ATTLIST model
 id ID #IMPLIED
 kind NMTOKEN #REQUIRED
 role NMTOKEN #IMPLIED
>

<!ELEMENT atom (name, (regnode|constraint|attribute)*)>
<!ATTLIST atom
 id ID #IMPLIED
 kind NMTOKEN #REQUIRED
 role NMTOKEN #IMPLIED
>
<!ELEMENT attribute (value, regnode*)>
<!ATTLIST attribute
 kind NMTOKEN #REQUIRED
>

Figure 3: Subset of GME DTD

In Figure 4, the addAtom method simply calls another XML Parser support method named addNode.
This method makes the necessary call to the DOM in order to attach a new node to the XML model (a
structurally equivalent addModel method is coded in the same manner – atoms and models, as shown in
the DTD, have the same attribute list). The findModel method basically executes an XPath query to the
DOM in order to search for a model with a specific name (submitXPath is itself an adapter method
whose details are not shown here). The findFolder and findAtom methods are written in the same
style. The “id” attribute of any modeling element can be obtained by calling the XML Parser id method.
Other attribute accessor methods are written in the same style. Again, though, these methods are tied to the
GME DTD. The future research will explore the generation of the code in Figure 4 from the tool’s DTD.

XML
Parser

Generator

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE project SYSTEM "mga.dtd">

XML DTD

Specification
Aspects XML

(Model Hierarchy)
Strategies (C++)

XML

Parser Parser

Aspect

nodeType XMLParser::addAtom(nodeType self, CComBSTR kind,
 CComBSTR role, CComBSTR name)
{
 return addNode(self, "atom", kind, role, name);
}
nodeType XMLParser::findModel(nodeType aNode, CComBSTR name)
{

 CComBSTR bstrFind(L"./model[name=\"");
 nodeType res;

 bstrFind.Append(name);
 bstrFind.Append("\"]");

 res = submitXPath(aNode, bstrFind);

 return res;

}
CComBSTR XMLParser::id(nodeType aNode)
{
 CComBSTR res;
 CComPtr<IXMLDOMNode> attr = XMLParser::findAttribute(aNode, "id");
 XMLParser::getStr(attr, res);
 return res;
}

Figure 4: Sample Subset of XML Parser Methods

3. Generating a Code Generator

A perusal of the strategies specified in [4. 5] exposes the fact that the following operators are referenced in
many strategy definitions: connections, models, refs, connpoint, findFolder,
findModel, and findAtom. This suggests that tool-specific knowledge has crept into the intentions
that can be expressed from within the ECL. A survey of the methods within the StratGen code generator
will reveal the presence of GME-specific concepts (it is recognized that many tools would use terms such
as “atom” and “model” to denote specific modeling concepts, but the presence of methods like
findModel is the result of a dependence on the GME, not a generalization of all modeling tools). This
can be viewed in Figure 5, which contains the code to generate the C++ strategy for calling the
findModel method that is in the XML Parser (see the second method in Figure 4). The generation
methods for findAtom, findConnection, and a host of other tool-specific methods are constructed in
an analogous manner by making reference to the methods provided in XML Parser.

void Generator::GenerateFindModel()
{

 static findModelCounter = 0;

 genOut << indentStr << "nodeType aModelFind" << findModelCounter <<
 " = XMLParser::findModel(" << lastVariable << ", ";

 lastVariable.Format("%s%d", "aModelFind", findModelCounter++);

}

Figure 5: Code Generation for findModel (located within StratGen)

To reduce the tool dependency bias within the StratGen code generator, portions of StratGen itself could be
generated from a tool’s DTD, as suggested in Figure 6. This is the second part of the future work that is
planned in order to bring the aspect weaving idea to other tools.

Figure 6: Generating StratGen from a Tool-Specific DTD

4. Conclusion

The initial effort for providing support for aspect-oriented domain modeling (as described in [4, 5]) was
coupled to a particular modeling tool. It would be interesting to experiment with the possibilities of a more
generalized framework. This brief position paper outlined some ideas for future work that will be explored
in order to provide support for better separation of modeling concerns that are crosscutting in nature.

References

1. Edward Barkmeyer and Joshua Lubell, “XML Representation of EXPRESS Models and Data,” ICSE

Workshop on XML Technologies and Software Engineering, Toronto, Ontario, Canada, May 2001.
2. Krzysztof Czarnecki and Ulrich Eiseneker, Generative Programming Methods, Tools, and Applications,

Addison Wesley, 2000.
3. http://www.htc.honeywell.com/dome/
4. Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling Crosscutting Constraints in Domain-

Specific Modeling,” Communications of the ACM, October 2001, pp. 87-93.
5. Jeff Gray, “Aspect-Oriented Domain-Specific Modeling: A Generative Approach Using a Metaweaver

Framework,” Department of Electrical Engineering and Computer Science, Vanderbilt University,
Doctoral Dissertation, March 2002.

6. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin, “Aspect-Oriented Programming,” European Conference on Object-Oriented
Programming (ECOOP), LNCS 1241, Springer-Verlag, Jyväskylä, Finland, June 1997, pp. 220-242.

7. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE Computer, November 2001,
pp. 44-51.

8. Edward Lee, “Overview of the Ptolemy Project,” Technical Memorandum UCB/ERL M01/11, March 6,
2001.

9. Janos Sztipanovits and Gábor Karsai, “Model-Integrated Computing,” IEEE Computer, April 1997, pp.
10-12.

10. Peri Tarr, Harold Ossher, William Harrison, and Stanley Sutton, “N Degrees of Separation: Multi-
Dimensional Separation of Concerns,” International Conference on Software Engineering (ICSE), Los
Angeles, California, May 1999, pp. 107-119.

11. Juha-Pekka Tolvanen and Steve Kelly, “Visual Domain-Specific Modeling: Benefits and Experiences
of Using metaCASE Tools,” ECOOP Workshop on Model Engineering, Cannes, France, June 2000.

Meta-Generator

Strategy
Code Generator

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE project SYSTEM "mga.dtd">

XML DTD

