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Abstract. This brief paper describes future extensions to a framework that supports the 
creation of aspect weavers for domain modeling. The current implementation of the 
weaver framework is tied to a specific modeling tool. The two framework extensions 
outlined here will provide the variability needed to use the weaver with other 
metamodeling tools. A key to this future work will be the generation of a generator from 
an XML DTD or schema. 

 
1. Introduction 
 
The Generic Modeling Environment (GME) is a metamodeling tool that has been under development for 
over a decade at Vanderbilt University’s Institute for Software Integrated Systems (ISIS) [9]. The GME 
provides the ability to build domain-specific modeling environments from a metalevel specification of the 
domain [7]. Once a tailored GME environment has been created, models are constructed using idioms and 
visual representations that are peculiar to a particular domain. Domain-specific interpreters are also created 
that can synthesize the domain models into other artifacts (e.g., source code, VHDL, FPGA’s). 
 
It is often the case that the domain metamodel forces the emergence of a dominant decomposition [10] that 
imposes the subjugation of other concerns. It has been observed that some properties of a domain-specific 
model are crosscutting [4]. That is, a single concern (e.g., latency or power in a real-time system) is 
scattered throughout the model in many different locations. Modifications to a crosscutting concern require 
a modeler to visit each location that contains the concern and make manual modifications – a difficult, if 
not impossible, task for anything but a simple model. 
 
To provide better modularization and separation for crosscutting modeling concerns, a combination of an 
aspect-oriented [6] and generative programming [2] approach was applied to domain modeling within the 
GME (please see [4, 5] for more details). The solution provides a metaweaver framework that supports the 
creation of new weavers for each domain (see Figure 1). To provide an instantiation of the framework, 
domain-specific strategies are written to specify heuristics for each particular domain. The Embedded 
Constraint Language (ECL) was developed to provide the capability to navigate a model and specify 
transformations used in strategies. As shown in Figure 1, a code generator translates the ECL specifications 
into C++ code that is then compiled for each weaver instance. Once a new weaver is created, modelers can 
then modularize concerns by writing specification aspects. A specification aspect supplies the capability 
needed to properly separate crosscutting concerns. 
 
The intent of the framework is to provide variability for different domains. That is, it gives the benefit of 
being able to generate new weavers for each new domain. However, the two main components of the 
framework (StratGen and the XML Parser) are very much coupled to the GME tool. It would be interesting 
to explore the possibilities of applying weaving to models created from other modeling tools. The rest of 
this paper describes two additional degrees of variability that will be explored in order to make domain 
weaving available from within other tools. 



 
Figure 1: Metaweaver Framework 

 
 
2. Variability with Respect to Modeling Tools 

The current incarnation of the weaver assumes that the separation of modeling concerns is being performed 
on models created with the GME. In fact, this assumption is built into the XML Parser that was shown in 
Figure 1. The limitation imposed by this assumption precludes other modeling tools (that also can export 
models using XML) from being able to employ the benefits of an aspect model weaver. In addition to the 
GME, other examples of domain-specific visual modeling tools are Honeywell’s Domain Modeling 
Environment [3], and metaEdit+ (from metaCASE) [11]. It is possible that these, and other modeling tools 
(such as Ptolemy, from UC Berkeley [8]) and notations (such as an XML representation for EXPRESS [1]), 
could benefit from an aspect-oriented modeling approach. 
 
Figure 2 illustrates the manner in which a new code generator could be inserted into the metaweaver 
framework in order to provide an added measure of variability. From the modeling tool’s Document Type 
Definition (DTD), the functionality of the DOM wrappers provided within the XML Parser can be 
generated. For example, the ECL provides several reflective operators that allow details of a model to be 
obtained from within a strategy or specification aspect (examples of such operators would be findModel, 
findAtom, and findAttribute). These reflective operators are actually implemented as wrappers 
within the XML Parser. 
 
The details of the implementation of the XML Parser reveal that it is tightly coupled to the DTD that GME 
uses during the import and export of models. A subset of the GME DTD is shown in Figure 3. That figure 
specifies the definition of GME models, atoms, and attributes. The definition of other modeling entities 
(e.g., connections and references, among others) would be specified similarly. Other tools, where the DTD 
may not contain modeling elements called “model,” “atom,” or “attribute” would require different adapters 
for accessing the XML DOM.  
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ifexpr > [ClIfExpr* res] : 
    <<  
   ClExpr *_condE; 
   ClExprList* _thenExprs = new ClExprList; 
   ClExprList* _elseExprs = new ClExprList; 
   ClAction* _postThen = nil; 
   ClAction* _postElse = nil; 
>> 
IF cexpr > [_condE]  
   THEN cexprs [_thenExprs] { action > [_postThen] }  
   { ELSE cexprs [_elseExprs] { action > [_postElse] } }  
   ENDIF 
<< $res = new ClIfExpr(_condE, _thenExprs, _elseExprs, _postThen, _postElse); >> 
; 
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ifexpr > [ClIfExpr* res] : 
    <<  
   ClExpr *_condE; 
   ClExprList* _thenExprs = new ClExprList; 
   ClExprList* _elseExprs = new ClExprList; 
   ClAction* _postThen = nil; 
   ClAction* _postElse = nil; 
>> 
IF cexpr > [_condE]  
   THEN cexprs [_thenExprs] { action > [_postThen] }  
   { ELSE cexprs [_elseExprs] { action > [_postElse] } }  
   ENDIF 
<< $res = new ClIfExpr(_condE, _thenExprs, _elseExprs, _postThen, _postElse); >> 
; 



 
Figure 2: Variability with Respect to Modeling Tool 

 
Given the XML element definitions from the Figure 3, there is a straightforward mapping to many of the 
XML Parser methods. A few such methods are listed in Figure 4. Throughout the code listing in that figure, 
it can be observed quite easily that the element definitions from the DTD have greatly influenced the 
methods defined in the XML Parser (to see this, just look through the source in Figure 4 for strings like 
“model,” “atom,” and “id”). Similar routines could be generated from the metalevel definition (found in the 
DTD) of other modeling tools that use XML for model persistence. 

 
 
<!ELEMENT model (name, (constraint|attribute|model|atom|reference|set 
                        connection)*)> 
<!ATTLIST model 
 id   ID   #IMPLIED 
 kind   NMTOKEN  #REQUIRED 
 role   NMTOKEN  #IMPLIED 
> 
 
<!ELEMENT atom (name, (regnode|constraint|attribute)*)> 
<!ATTLIST atom 
 id   ID   #IMPLIED 
 kind   NMTOKEN  #REQUIRED 
 role   NMTOKEN  #IMPLIED 
> 
<!ELEMENT attribute (value, regnode*)> 
<!ATTLIST attribute 
 kind   NMTOKEN  #REQUIRED 
> 

 
Figure 3: Subset of GME DTD 

 
In Figure 4, the addAtom method simply calls another XML Parser support method named addNode. 
This method makes the necessary call to the DOM in order to attach a new node to the XML model (a 
structurally equivalent addModel method is coded in the same manner – atoms and models, as shown in 
the DTD, have the same attribute list). The findModel method basically executes an XPath query to the 
DOM in order to search for a model with a specific name (submitXPath is itself an adapter method 
whose details are not shown here). The findFolder and findAtom methods are written in the same 
style. The “id” attribute of any modeling element can be obtained by calling the XML Parser id method. 
Other attribute accessor methods are written in the same style. Again, though, these methods are tied to the 
GME DTD. The future research will explore the generation of the code in Figure 4 from the tool’s DTD. 
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nodeType XMLParser::addAtom(nodeType self, CComBSTR kind, 
                            CComBSTR role, CComBSTR name) 
{ 
 return addNode(self, "atom", kind, role, name); 
} 
nodeType XMLParser::findModel(nodeType aNode, CComBSTR name) 
{ 
 
  CComBSTR bstrFind(L"./model[name=\"");   
  nodeType res; 
 
  bstrFind.Append(name); 
  bstrFind.Append("\"]"); 
 
  res = submitXPath(aNode, bstrFind); 
 
  return res; 
 
} 
CComBSTR XMLParser::id(nodeType aNode) 
{ 
  CComBSTR res; 
  CComPtr<IXMLDOMNode> attr = XMLParser::findAttribute(aNode, "id"); 
  XMLParser::getStr(attr, res); 
  return res; 
} 

 
Figure 4: Sample Subset of XML Parser Methods 

 
3. Generating a Code Generator 

A perusal of the strategies specified in [4. 5] exposes the fact that the following operators are referenced in 
many strategy definitions: connections, models, refs, connpoint, findFolder, 
findModel, and findAtom. This suggests that tool-specific knowledge has crept into the intentions 
that can be expressed from within the ECL. A survey of the methods within the StratGen code generator 
will reveal the presence of GME-specific concepts (it is recognized that many tools would use terms such 
as “atom” and “model” to denote specific modeling concepts, but the presence of methods like 
findModel is the result of a dependence on the GME, not a generalization of all modeling tools). This 
can be viewed in Figure 5, which contains the code to generate the C++ strategy for calling the 
findModel method that is in the XML Parser (see the second method in Figure 4). The generation 
methods for findAtom, findConnection, and a host of other tool-specific methods are constructed in 
an analogous manner by making reference to the methods provided in XML Parser. 

 
 
void Generator::GenerateFindModel() 
{ 
 
  static findModelCounter = 0; 
 
  genOut << indentStr << "nodeType aModelFind" << findModelCounter <<  
                   " = XMLParser::findModel(" << lastVariable << ", "; 
 
  lastVariable.Format("%s%d", "aModelFind", findModelCounter++); 
 
} 
 

 
Figure 5: Code Generation for findModel (located within StratGen) 

 



To reduce the tool dependency bias within the StratGen code generator, portions of StratGen itself could be 
generated from a tool’s DTD, as suggested in Figure 6. This is the second part of the future work that is 
planned in order to bring the aspect weaving idea to other tools. 

 
Figure 6: Generating StratGen from a Tool-Specific DTD 

 

4. Conclusion 
 
The initial effort for providing support for aspect-oriented domain modeling (as described in [4, 5]) was 
coupled to a particular modeling tool. It would be interesting to experiment with the possibilities of a more 
generalized framework. This brief position paper outlined some ideas for future work that will be explored 
in order to provide support for better separation of modeling concerns that are crosscutting in nature. 
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