
A Model-Driven Approach to Enforce
Crosscutting Assertion Checking

Jing Zhang, Jeff Gray and Yuehua Lin

University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL, 35294
205-934-5841

{zhangj, gray, liny} @ cis.uab.edu

ABSTRACT
Design by Contract provides an effective principle to enable the
construction of robust software by describing properties of a
module using logical assertions. This paper presents a model-
driven approach for weaving assertion checking aspects into a
large software system. The approach is based on a technique
called two-level aspect weaving. At the top level, crosscutting
assertions are weaved into a model by use of a model weaver. The
second step of the weaving process occurs when the Model-
Driven Program Transformation technique is applied to perform
large-scale adaptation of the underlying source code from the
contracts specified in the high-level models. The paper briefly
presents a case study to illustrate the concept.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques,
D.2.6 [Software Engineering]: Programming Environments –
graphical environments and F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Systems.

Keywords
Design by Contract, Aspect-Oriented Programming, Model-
Driven Software Development, Program Transformation.

1. INTRODUCTION
Design by Contract (DBC) is a well-known methodology [13] to
help construct reliable and robust software. The basic idea of
DBC is that a class can be viewed as having a contract with its
client, whereby the client agrees to satisfy certain requirements
before calling a method specified by the class (the pre-conditions
of the class’s method). Correspondingly, the class guarantees
certain results after the execution of the method call (the post-
conditions of its method).

Applying DBC can be a challenge. Manual placement of pre/post
conditions into the application has serious drawbacks in terms of
poor modularity and reusability. A desired solution to achieve
modularization is that a change in a design decision is isolated to
one location. Aspect-Oriented Programming (AOP) [9] has been
investigated as an effective technique for improving
modularization of crosscutting features. From the viewpoint of
AOP, pre/post conditions that define systemic global properties
represent a type of crosscutting concern [12], [5].
Most of the current DBC tools (e.g., JML [10] and Cona [16])
work primarily on the implementation’s source code. However,
software systems are not just source code, but rather
collaborations of different representations of software artifacts
(e.g., design models, configuration files, documents). The
separations of concerns (e.g., the logical assertions in DBC) not
only exists in the application code, but also are reflected at the
design level. Thus, there is a need for tools that can employ DBC
at different software abstraction levels to ensure the consistency
between each level.
The main contribution of this paper is to provide a model-driven
approach toward employing DBC at both the design model level
and the implementation source level. The approach is based on a
procedure called two-level aspect weaving. At the modeling level,
the crosscutting assertions are weaved into a model by use of a
model weaving tool; i.e., our tool called the Constraint-
Specification Aspect Weaver (C-SAW) [6]. The second step of
the weaving process occurs when the Model-Driven Program
Transformation (MDPT) [7] technique is applied to perform large
scale adaptation of the underlying source code from the contracts
specified in the high-level models.

The paper is structured as follows. Section 2 introduces the
general idea of two-level aspect weaving. A specific example for
adding assertion checking aspects into a large software system is
given in Section 3. The conclusion offers summary comments and
a discussion of future work.

2. TWO-LEVEL ASPECT WEAVING

2.1 Constraint-Specification Aspect Weaver
C-SAW is a model transformation engine implemented as a plug-
in component for the Generic Modeling Environment (GME) [1].
The GME is a domain-specific modeling tool that provides meta-
modeling [8] capabilities to configure instance models from meta-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Modeling and Analysis of Concerns in Software (MACS 2005)
16 May 2005, St. Louis, MO, USA
Copyright 2005 ACM 1-59593-119-8/05/05…$5.00.

model specifications. C-SAW applies the ideas of AOP to GME
to provide better modularization of model properties that are
crosscutting throughout multiple layers of a model. C-SAW
permits exploration of numerous modeling scenarios by
considering crosscutting modeling concerns as aspects that can be
inserted and removed from a model rapidly. This allows a
modeler to make changes more easily to the base model without
manually visiting multiple locations in the model.

The top of Figure 1 illustrates the model aspect weaving process
in C-SAW where a base GME model serves as input to the model
weaver (top-left of figure). This is the first level that performs
weaving on models. C-SAW also requires a modeling aspect that
captures the strategy for weaving a crosscutting modeling concern
(top-right of figure). The output of C-SAW is a new model that
has a crosscutting concern dispersed across the original base
model. The modeling aspects are written in the Embedded
Constraint Language (ECL) [6], which is an extension of OCL
[17]. The ECL provides special operators to support model
transformations within the GME.

ECL is distinct from OCL with respect to side-effects and model
manipulation features. OCL is a declarative language and
therefore it cannot support operations to create, update or remove
the entities within a model, whereas the use of ECL requires the
capability to introduce side-effects into a base model. This is
needed because the modeling aspects specify transformations that
must be performed on the model. This requires the ability to make
modifications to the model. Therefore, ECL supports an
imperative transformation procedural style with numerous
operations that can alter the state of the model. An example of
ECL will be presented later in Sections 3.

2.2 Model-Driven Program Transformation
A key challenge for model-driven development is the ability to
maintain the fidelity between the mapping of model properties
and the underlying source code. With respect to model-driven
evolution, the majority of model-driven software development
tools are well-equipped to generate and synthesize new software
artifacts. However, support for parsing and invasively [2]
transforming legacy application source code from higher-level
models is not well-represented in the research literature. In order
to address this limitation, this paper briefly demonstrates the
feasibility of utilizing the power of a mature program
transformation system to support large scale source-level
transformations.

The bottom of Figure 1 corresponds to MDPT, a generative [4]
approach that is applied to perform the adaptation of the source
code of a software system from properties described in high-level
models. This is the second level that performs weaving on source
code. The approach synergistically extends the GME modeling
process by incorporating the Design Maintenance System (DMS)
[3] as the underlying program transformation engine. The core
component of DMS is an Abstract Syntax Tree (AST) term
rewriting engine that supports powerful capabilities for pattern
matching and source transformation. DMS provides pre-
constructed domains for several dozen languages. These domains
are very mature and have been used to parse several million lines
of code in various domains. Furthermore, an important feature of
DMS is the source-to-source transformation rules that can be
applied to modify a large cross-section of a code base.

In the MDPT approach, domain-specific model interpreters are
constructed as GME plug-ins that are able to make the
comparison between the old and new models, and then generate
the DMS transformation rules from the evolving features
described in a model. With the aid of these interpreters,
developers do not have to handle the low-level DMS
transformation rules. Therefore, the corresponding source code
(bottom-left of figure), along with the generated transformation
rules (middle of figure), serves as input to the DMS engine. As a
result, the source programs will be modified and adapted to the
new requirements that are reflected in the model changes. An
essential characteristic of this model-driven process is the
existence of a causal connection between the models and the
underlying source representation. That is, as model changes are
made to certain properties of a system, those changes must have a
corresponding effect at the implementation level.

3. PRE/POST ASSERTION CHECKING
This section presents a case study for adding pre/post assertion
checking into Boeing’s Bold Stroke mission computing avionics
system using the two-level aspect weaving approach. Within Bold
Stroke, the primary software elements are a middleware run-time
framework and thousands of application components that are
implemented in several million lines of C++ code [15]. Specific
components that comply with certain established architecture
policies can be configured into various military aircraft flight
scenarios.

Figure 2 shows the internal representation of a specific
component with its data elements, facet/receptacle descriptors and
other constituents of a model that are specifically intended to

 DMS Xform
Rules

Weaved Model

void BM__PushPullComponentImpl::Update (const
UUEventSet& events)
{
BM__ComponentInstrumentation::EventConsumer(GetI
d(), "Update", events);
 unsigned int tempData1 = GetId().GetGroupId();
 unsigned int tempData2 = GetId().GetItemId();
 std::vector<BM__ClosedComponent*>::iterator devIter
= devices_.begin();
 std::vector<BM__ClosedComponent*>::iterator endIter
= devices_.end();
 for (; devIter != endIter; ++devIter)
 {
 BM__ClosedComponent* component = *devIter;
 const UUIdentifier& id = component->GetId();
 if (idInEventSet(id, events))
 {

t BM Cl dF ti lF t& f t

Original
Source Code

void BM__PushPullComponentImpl::Update (const UUEventSet&
events)
{ UM__GUARD_EXTERNAL_REGION(GetExternalPushLock());
 BM__ComponentInstrumentation::EventConsumer(GetId(),
"Update", events);
 unsigned int tempData1 = GetId().GetGroupId();
 unsigned int tempData2 = GetId().GetItemId();
 std::vector<BM__ClosedComponent*>::iterator devIter =
devices_.begin();
 std::vector<BM__ClosedComponent*>::iterator endIter =
devices_.end();
 for (; devIter != endIter; ++devIter) {
 BM__ClosedComponent* component = *devIter; const
UUIdentifier& id = component->GetId();
 if (idInEventSet(id, events)) {
 const BM__ClosedFunctionalFacet& facet = component-
>ProvideClosedFunctionalFacet();

BM ComponentInstrumentation::SendDirectCall(GetId()

Transformed
Source Code

GME Model
Modeling Aspect

//show("Data fields exist. Add two
concurrency atoms.");
//add the first concurrency atom
concurrencyAtom1 :=
addAtom("Concurrency", "InternalLock");
concurrencyAtom1.setAttribute("Enable",
"1");// "1" is true, "0" is false
concurrencyAtom1.setAttribute("LockType",
"Thread Mutex");
concurrencyAtom1.setAttribute("LockStrate
gy" "Internal Locking");

Figure 1. Two-level aspect weaving.

describe the Bold Stroke component deployment and distribution
middleware infrastructure. The infrastructure implements an
event-driven model of computation. In this computation model,
components update and transfer data to each other through event
notification and call-back methods. Of particular interest to the
context of this paper are the pre/post conditions attached to the
data objects.

1 void BM__ClosedEDComponent::
2 Update(const UUEventSet& events)
3
4 {
5 assert(data1_>200); // <- Precondition
6
7 BM_CompInstrumentation::
8 EventConsumer(GetId(), "Update", events);
9 unsigned int tempData1 = GetId().GetGroupId();
10 unsigned int tempData2 = GetId().GetItemId();
11
12 //* REMOVED code for Real-time Event Channel
13
14 data1_ = tempData1;
15 //* REMOVED actual variable names (proprietary)
16
17 data2_ = tempData2;
18
19 assert(data1<500); // <- Postcondition
20
21 }

Listing 1. C++ code fragment in “Update” method.

The equivalent C++ code fragment of the “Update” method
from “BM__ClosedEDComponent” is shown in Listing 1. This
method participates in the implementation of the real-time event
channel and the update of the component data after performing all
of the internal processing. Error conditions are anticipated either
during system test or during actual system operation, such that the
enforcement of DBC to the component implementations is desired.

In order to ensure the data validity throughout the whole control
flow process, the pre/post conditions should be added into every
component model of interest (see the “Pre/Post” modeling atoms
in Figure 2). Furthermore, system developers need to insert the
pre-condition assert statement (Listing 1, Line 5) at the entry of
every “Update” method, and the post-condition (Listing1,
Line19) at the end of the method in all of the corresponding
components. Thus, any violation of the conditions that occurs
during the execution is detected by these assertions.

An alternative to adding the contract assertions manually is to
weave those assertions into the modeling level, and in turn drive
the transformation of the corresponding code. To perform the
model-level assertion weaving, Listing 2 shows the ECL code for
weaving the pre/post conditions in Bold Stroke component
models. The transformation strategy finds the “data1_” atom
(Line 3 to Line 7) in every component whose name ends with
“Impl” (line 28 to line 33). For each obtained “data1_” atom,
two atoms are created, representing the pre-condition (Line 17-19)
and post-condition (Line 22-24) with their condition expressions
set to “data1_>200” and “data1_<500.” Finally, these two
conditions are connected to the “data1_” atom (Line 20 and
Line 25). As a result, after using C-SAW to apply this ECL

Figure 2. Internal representation of components in GME models.

specification, “PreCondData1_” and “PostCondData1_”
atoms will be inserted into each component that has a “data1_”
atom (see Figure 2).

1 defines Start, FindData1, AddConds;
2
3 strategy FindData1()
4 {
5 atoms()->select(a | a.kindOf() == "Data"
6 and a.name() == "data1_")-> AddConds();
7 }
8
9 strategy AddConds()
10 {
11 declare p : model;
12 declare data, pre, post : atom;
13
14 data := self;
15 p := parent();
16
17 pre:=p.addAtom("Condition","PrecondData1_");
18 pre.setAttribute("Kind", "PreCondition");
19 pre.setAttribute("Expression", "data1_>200");
20 p.addConnection("AddCondition", pre, data);
21
22 post:=p.addAtom("Condition", "PostcondData1_");
23 post.setAttribute("Kind", "PostCondition");
24 post.setAttribute("Expression", "data1_<500");
25 p.addConnection("AddCondition", post, data);
26 }
27
28 aspect Start()
29 {
30 rootFolder().findFolder("ComponentTypes").
31 models()->select(m|m.name().endWith("Impl"))
32 ->FindData1();
33 }

Listing 2. ECL code for adding pre/post

conditions in GME models.

1 default base domain Cpp~VisualCpp6.
2
3 pattern assertStmt() :
4 statement = "assert(data1_>200);".
5
6 pattern aspect(s:statement_seq):
7 statement_seq = " \assertStmt\(\){ \s }".
8
9 pattern joinpoint(id:identifier):
10 qualified_id = "\id :: Update".
11
12 rule precondition(ret:decl_specifier_seq,
13 id:identifier,
14 p:parameter_declaration_clause,
15 s:statement_seq):
16 function_definition -> function_definition
17 = "\ret \joinpoint \(\id\)(\p){\s}"
18 -> "\ret \joinpoint \(\id\)(\p){\aspect\(\s\)}"
19 if ~[modsList:statement_seq .s matches
20 "\:statement_seq \apect\(\modsList\)"].
21
22 public ruleset applyrules =
23 {
24 precondition
25 }.

Listing 3. Generated DMS rule to insert precondition

statement into the C++ code.

After the pre/post conditions are weaved into the GME models,
the next step is to invoke the MDPT interpreter to generate the
DMS transformation rules. A fragment of the generated DMS
transformation rule to insert the precondition statement into the
Bold Stroke C++ code is presented in Listing 3. The DMS rule
consists of declarations of patterns, rules, conditions, and rule sets
using the external form (concrete syntax) defined by a language
domain. The pattern in Line 3 represents the assert statement that
is to be inserted. The second pattern (Line 6) describes the form
of the resulting syntax tree. Pattern “joinpoint” (Line 9)
provides the context in which the transformation rules will be
applied. Here, the rules will be applied to all of the components
containing an “Update” method. This pattern is similar to a join
point in AspectJ [9]. The rule “precondition” (Line 12)
represents a transformation of adding an assert statement at the
beginning of each “Update” method. It is worth noting that the
system developer does not create (or even see) the transformation
rules. These are created by the MDPT interpreter and directly
applied toward the transformation of Bold Stroke C++ source
code using DMS. The resulting transformation will be equivalent
to the DBC code that was manually added in Listing 1.

To summarize the whole process for implementing pre/post
condition checking using two-level aspect weaving, the steps are:

• In the GME meta-model, include a new modeling element
called “Condition.” This addition is needed because the
original Bold Stroke system does not support DBC;

• Associate different kinds of contracts to data fields in the
component model using C-SAW;

• Make extension to the current MDPT interpreter according
to the new requirements of the pre/post condition concern;

• Using the MDPT technique, weave specific “assert”
statements into appropriate locations in the C++ source code
according to different conditions specified in the
corresponding GME model and ECL strategies.

4. CONCLUSION AND FUTURE WORK
This paper outlines a two-level aspect weaving approach to
enforce DBC over different abstraction levels. An initial
experiment was conducted to evaluate the feasibility of this
approach using scenarios from an avionics application. Our model
aspect weaver (C-SAW) has been successfully applied to many
other different modeling languages [6], [19]. A model interpreter
was developed to generate the program transformation rules
needed to perform widespread source transformation of Boeing’s
Bold Stroke. In addition to the crosscutting concerns for DBC, the
transformation process provides several other adaptations based
on quality of service [14] policies specified in the models, such as
concurrency control patterns and state management. We selected
a subset of this system and applied adaptations across hundreds of
C++ files that were successfully parsed and transformed in
accordance with changes made in the representative models. For
more technical details, see [7], [18].

Our initial investigation and associated prototype is tailored to a
specific domain (i.e., real-time embedded avionics). The future
work will focus on the generalization of the process for
supporting software system evolution through two-level aspect
weaving. In addition, we are in the process of developing a model
testing suite to assist in assessing the correctness of model

transformations [11], such as those used to specify contracts at the
modeling level. A debugging toolkit is also planned for C-SAW,
which will be indispensable for detecting errors in the ECL
specification during the weaving process.

The software, publications, and several video demonstrations
related to this research can be obtained at
http://www.cis.uab.edu/gray/Research/C-SAW.

5. ACKNOWLEDGMENTS
This work is supported by the DARPA Information Exploitation
Office (DARPA/IXO), under the Program Composition for
Embedded Systems (PCES) program.

6. REFERENCES
[1] The Generic Modeling Environment: GME 4 User’s Manual,

Institute for Software Integrated Systems, Vanderbilt
University, 2004 (http://www.isis.vanderbilt.edu/Projects/
gme/).

[2] Aßmann, U., Invasive Software Composition, Springer-
Verlag, 2003.

[3] Baxter, I., Pidgeon, C., and Mehlich, M., “DMS: Program
Transformation for Practical Scalable Software Evolution,”
International Conference on Software Engineering (ICSE),
Edinburgh, Scotland, May 2004, pp. 625-634.

[4] Czarnecki, K., and Eiseneker, U., Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[5] Diotalevi, F., “Contract Enforcement with AOP,” IBM
DeveloperWorks, July 2004, http://www-
106.ibm.com/developerworks/library/j-ceaop/

[6] Gray, J., Sztipanovits, J., Schmidt, D., Bapty, T., Neema, S.,
and Gokhale, A., “Two-level Aspect Weaving to Support
Evolution of Model-Driven Synthesis,” in Aspect-Oriented
Software Development, (Robert Filman, Tzilla Elrad,
Mehmet Aksit, and Siobhán Clarke, eds.), Addison-Wesley,
2004, Chapter 30, pp. 681-710.

[7] Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H.,
Sudarsan, R., Gokhale, A., Neema, S., Shi, F., and Bapty, T.,
“Model-Driven Program Transformation of a Large Avionics
Framework,” Generative Programming and Component
Engineering (GPCE 2004), Springer-Verlag LNCS,
Vancouver, BC, October 2004, pp. 361-378.

[8] Karsai, G., Maroti, M., Lédeczi, Á., Gray, J., and
Sztipanovits, J., “Composition and Cloning in Modeling and
Meta-Modeling,” IEEE Transactions on Control System
Technology (special issue on Computer Automated Multi-
Paradigm Modeling), March 2004, pp. 263-278.

[9] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W., “Getting Started with AspectJ,”
Communications of the ACM, October 2001, pp. 59-65.

[10] Leavens, G., and Cheon, Y., “Design by Contract with
JML,” Java Modeling Language Project, Internet:
http://www.jmlspecs.org, 2003.

[11] Lin, Y., Zhang, J., and Gray, J., “A Testing Framework for
Model Transformations,” Model-driven Software
Development - Research and Practice in Software
Engineering, accepted for publication in 2005, a book by
Springer.

[12] Lippert, M., and Lopes, C., “A Study on Exception Detection
and Handling Using Aspect-Oriented Programming,”
International Conference on Software Engineering (ICSE
2000), Limmerick, Ireland, 2000, pp. 418-427.

[13] Meyer, B., “Applying Design by Contract,” Computer,
25(10), October 1992, pp. 40-51.

[14] Neema, S., Bapty, T., Gray, J. and Gokhale, A., “Generators
for Synthesis of QoS Adaptation in Distributed Real-Time
Embedded Systems,” First ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component
Engineering (GPCE '02), Springer-Verlag LNCS 2487,
Pittsburgh, PA, October 2002, pp. 236-251.

[15] Sharp, D., “Component-Based Product Line Development of
Avionics Software,” First Software Product Lines
Conference (SPLC-1), Denver, Colorado, August 2000, pp.
353-369.

[16] Skotiniotis, T., and Lorenz, D., “Cona: aspects for contracts
and contracts for aspects,” Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (OOPSLA),
Vancouver, BC, Canada, October 2004, pp. 196-197.

[17] Warmer, J., and Kleppe, A., The Object Constraint
Language: Getting Your Models Ready for MDA, Addison-
Wesley, 2004.

[18] Zhang, J., and Gray, J., “Legacy System Evolution through
Model-Driven Program Transformation,” EDOC Workshop
on Model-Driven Evolution of Legacy Systems, Monterey,
CA, September 2004.

[19] Zhang, J., Lin, Y., and Gray, J., “Generic and Domain-
Specific Model Refactoring using a Model Transformation
Engine,” Model-driven Software Development - Research
and Practice in Software Engineering, accepted for
publication in 2005, a book by Springer.

