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ABSTRACT 
Design by Contract provides an effective principle to enable the 
construction of robust software by describing properties of a 
module using logical assertions. This paper presents a model-
driven approach for weaving assertion checking aspects into a 
large software system. The approach is based on a technique 
called two-level aspect weaving. At the top level, crosscutting 
assertions are weaved into a model by use of a model weaver. The 
second step of the weaving process occurs when the Model-
Driven Program Transformation technique is applied to perform 
large-scale adaptation of the underlying source code from the 
contracts specified in the high-level models. The paper briefly 
presents a case study to illustrate the concept. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques, 
D.2.6 [Software Engineering]: Programming Environments – 
graphical environments and F.4.2 [Mathematical Logic and 
Formal Languages]: Grammars and Other Rewriting Systems. 

Keywords 
Design by Contract, Aspect-Oriented Programming, Model-
Driven Software Development, Program Transformation. 

1. INTRODUCTION 
Design by Contract (DBC) is a well-known methodology [13] to 
help construct reliable and robust software. The basic idea of 
DBC is that a class can be viewed as having a contract with its 
client, whereby the client agrees to satisfy certain requirements 
before calling a method specified by the class (the pre-conditions 
of the class’s method). Correspondingly, the class guarantees 
certain results after the execution of the method call (the post-
conditions of its method). 

Applying DBC can be a challenge. Manual placement of pre/post 
conditions into the application has serious drawbacks in terms of 
poor modularity and reusability. A desired solution to achieve 
modularization is that a change in a design decision is isolated to 
one location. Aspect-Oriented Programming (AOP) [9] has been 
investigated as an effective technique for improving 
modularization of crosscutting features. From the viewpoint of 
AOP, pre/post conditions that define systemic global properties 
represent a type of crosscutting concern [12], [5]. 
Most of the current DBC tools (e.g., JML [10] and Cona [16]) 
work primarily on the implementation’s source code. However, 
software systems are not just source code, but rather 
collaborations of different representations of software artifacts 
(e.g., design models, configuration files, documents). The 
separations of concerns (e.g., the logical assertions in DBC) not 
only exists in the application code, but also are reflected at the 
design level. Thus, there is a need for tools that can employ DBC 
at different software abstraction levels to ensure the consistency 
between each level. 
The main contribution of this paper is to provide a model-driven 
approach toward employing DBC at both the design model level 
and the implementation source level. The approach is based on a 
procedure called two-level aspect weaving. At the modeling level, 
the crosscutting assertions are weaved into a model by use of a 
model weaving tool; i.e., our tool called the Constraint-
Specification Aspect Weaver (C-SAW) [6]. The second step of 
the weaving process occurs when the Model-Driven Program 
Transformation (MDPT) [7] technique is applied to perform large 
scale adaptation of the underlying source code from the contracts 
specified in the high-level models. 

The paper is structured as follows. Section 2 introduces the 
general idea of two-level aspect weaving. A specific example for 
adding assertion checking aspects into a large software system is 
given in Section 3. The conclusion offers summary comments and 
a discussion of future work. 

2. TWO-LEVEL ASPECT WEAVING 

2.1 Constraint-Specification Aspect Weaver 
C-SAW is a model transformation engine implemented as a plug-
in component for the Generic Modeling Environment (GME) [1]. 
The GME is a domain-specific modeling tool that provides meta-
modeling [8] capabilities to configure instance models from meta-
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model specifications. C-SAW applies the ideas of AOP to GME 
to provide better modularization of model properties that are 
crosscutting throughout multiple layers of a model. C-SAW 
permits exploration of numerous modeling scenarios by 
considering crosscutting modeling concerns as aspects that can be 
inserted and removed from a model rapidly. This allows a 
modeler to make changes more easily to the base model without 
manually visiting multiple locations in the model. 

The top of Figure 1 illustrates the model aspect weaving process 
in C-SAW where a base GME model serves as input to the model 
weaver (top-left of figure). This is the first level that performs 
weaving on models. C-SAW also requires a modeling aspect that 
captures the strategy for weaving a crosscutting modeling concern 
(top-right of figure). The output of C-SAW is a new model that 
has a crosscutting concern dispersed across the original base 
model. The modeling aspects are written in the Embedded 
Constraint Language (ECL) [6], which is an extension of OCL 
[17]. The ECL provides special operators to support model 
transformations within the GME.  

ECL is distinct from OCL with respect to side-effects and model 
manipulation features. OCL is a declarative language and 
therefore it cannot support operations to create, update or remove 
the entities within a model, whereas the use of ECL requires the 
capability to introduce side-effects into a base model. This is 
needed because the modeling aspects specify transformations that 
must be performed on the model. This requires the ability to make 
modifications to the model. Therefore, ECL supports an 
imperative transformation procedural style with numerous 
operations that can alter the state of the model. An example of 
ECL will be presented later in Sections 3. 

2.2 Model-Driven Program Transformation 
A key challenge for model-driven development is the ability to 
maintain the fidelity between the mapping of model properties 
and the underlying source code. With respect to model-driven 
evolution, the majority of model-driven software development 
tools are well-equipped to generate and synthesize new software 
artifacts. However, support for parsing and invasively [2] 
transforming legacy application source code from higher-level 
models is not well-represented in the research literature. In order 
to address this limitation, this paper briefly demonstrates the 
feasibility of utilizing the power of a mature program 
transformation system to support large scale source-level 
transformations. 

The bottom of Figure 1 corresponds to MDPT, a generative [4] 
approach that is applied to perform the adaptation of the source 
code of a software system from properties described in high-level 
models. This is the second level that performs weaving on source 
code. The approach synergistically extends the GME modeling 
process by incorporating the Design Maintenance System (DMS) 
[3] as the underlying program transformation engine. The core 
component of DMS is an Abstract Syntax Tree (AST) term 
rewriting engine that supports powerful capabilities for pattern 
matching and source transformation. DMS provides pre-
constructed domains for several dozen languages. These domains 
are very mature and have been used to parse several million lines 
of code in various domains. Furthermore, an important feature of 
DMS is the source-to-source transformation rules that can be 
applied to modify a large cross-section of a code base. 

In the MDPT approach, domain-specific model interpreters are 
constructed as GME plug-ins that are able to make the 
comparison between the old and new models, and then generate 
the DMS transformation rules from the evolving features 
described in a model. With the aid of these interpreters, 
developers do not have to handle the low-level DMS 
transformation rules. Therefore, the corresponding source code 
(bottom-left of figure), along with the generated transformation 
rules (middle of figure), serves as input to the DMS engine. As a 
result, the source programs will be modified and adapted to the 
new requirements that are reflected in the model changes. An 
essential characteristic of this model-driven process is the 
existence of a causal connection between the models and the 
underlying source representation. That is, as model changes are 
made to certain properties of a system, those changes must have a 
corresponding effect at the implementation level. 

3. PRE/POST ASSERTION CHECKING 
This section presents a case study for adding pre/post assertion 
checking into Boeing’s Bold Stroke mission computing avionics 
system using the two-level aspect weaving approach. Within Bold 
Stroke, the primary software elements are a middleware run-time 
framework and thousands of application components that are 
implemented in several million lines of C++ code [15]. Specific 
components that comply with certain established architecture 
policies can be configured into various military aircraft flight 
scenarios. 

Figure 2 shows the internal representation of a specific 
component with its data elements, facet/receptacle descriptors and 
other constituents of a model that are specifically intended to 

 DMS Xform 
Rules 

Weaved Model 

void BM__PushPullComponentImpl::Update (const 
UUEventSet& events) 
{    
BM__ComponentInstrumentation::EventConsumer(GetI
d(), "Update", events); 
   unsigned int tempData1 = GetId().GetGroupId(); 
   unsigned int tempData2 = GetId().GetItemId(); 
   std::vector<BM__ClosedComponent*>::iterator devIter 
= devices_.begin(); 
   std::vector<BM__ClosedComponent*>::iterator endIter 
= devices_.end(); 
   for (; devIter != endIter; ++devIter) 
   { 
      BM__ClosedComponent* component = *devIter; 
      const UUIdentifier& id = component->GetId(); 
      if (idInEventSet(id, events)) 
      { 

t BM Cl dF ti lF t& f t

Original 
Source Code 

void BM__PushPullComponentImpl::Update (const UUEventSet& 
events) 
{   UM__GUARD_EXTERNAL_REGION(GetExternalPushLock());       
   BM__ComponentInstrumentation::EventConsumer(GetId(), 
"Update", events);  
   unsigned int tempData1 = GetId().GetGroupId(); 
   unsigned int tempData2 = GetId().GetItemId();  
   std::vector<BM__ClosedComponent*>::iterator devIter = 
devices_.begin(); 
   std::vector<BM__ClosedComponent*>::iterator endIter = 
devices_.end();  
   for (; devIter != endIter; ++devIter)   { 
      BM__ClosedComponent* component = *devIter;      const 
UUIdentifier& id = component->GetId();  
      if (idInEventSet(id, events))      { 
         const BM__ClosedFunctionalFacet& facet = component-
>ProvideClosedFunctionalFacet();           

BM ComponentInstrumentation::SendDirectCall(GetId()

Transformed 
Source Code 

GME Model 
Modeling Aspect

//show("Data fields exist. Add two 
concurrency atoms."); 
//add the first concurrency atom 
concurrencyAtom1 := 
addAtom("Concurrency", "InternalLock"); 
concurrencyAtom1.setAttribute("Enable", 
"1");// "1" is true, "0" is false 
concurrencyAtom1.setAttribute("LockType", 
"Thread Mutex"); 
concurrencyAtom1.setAttribute("LockStrate
gy" "Internal Locking");

Figure 1. Two-level aspect weaving. 



describe the Bold Stroke component deployment and distribution 
middleware infrastructure. The infrastructure implements an 
event-driven model of computation. In this computation model, 
components update and transfer data to each other through event 
notification and call-back methods. Of particular interest to the 
context of this paper are the pre/post conditions attached to the 
data objects. 

 

1 void BM__ClosedEDComponent:: 
2      Update(const UUEventSet& events) 
3  
4 { 
5   assert(data1_>200);  // <- Precondition 
6    
7   BM_CompInstrumentation:: 
8         EventConsumer(GetId(), "Update", events); 
9   unsigned int tempData1 = GetId().GetGroupId(); 
10   unsigned int tempData2 = GetId().GetItemId(); 
11    
12   //* REMOVED code for Real-time Event Channel 
13    
14   data1_ = tempData1; 
15   //* REMOVED actual variable names (proprietary) 
16  
17   data2_ = tempData2; 
18    
19   assert(data1<500); // <- Postcondition 
20  
21 } 

 
Listing 1. C++ code fragment in “Update” method. 

 

The equivalent C++ code fragment of the “Update” method 
from “BM__ClosedEDComponent” is shown in Listing 1. This 
method participates in the implementation of the real-time event 
channel and the update of the component data after performing all 
of the internal processing. Error conditions are anticipated either 
during system test or during actual system operation, such that the 
enforcement of DBC to the component implementations is desired. 

In order to ensure the data validity throughout the whole control 
flow process, the pre/post conditions should be added into every 
component model of interest (see the “Pre/Post” modeling atoms 
in Figure 2). Furthermore, system developers need to insert the 
pre-condition assert statement (Listing 1, Line 5) at the entry of 
every “Update” method, and the post-condition (Listing1, 
Line19) at the end of the method in all of the corresponding 
components. Thus, any violation of the conditions that occurs 
during the execution is detected by these assertions. 

An alternative to adding the contract assertions manually is to 
weave those assertions into the modeling level, and in turn drive 
the transformation of the corresponding code. To perform the 
model-level assertion weaving, Listing 2 shows the ECL code for 
weaving the pre/post conditions in Bold Stroke component 
models. The transformation strategy finds the “data1_” atom 
(Line 3 to Line 7) in every component whose name ends with 
“Impl” (line 28 to line 33). For each obtained “data1_” atom, 
two atoms are created, representing the pre-condition (Line 17-19) 
and post-condition (Line 22-24) with their condition expressions 
set to “data1_>200” and “data1_<500.” Finally, these two 
conditions are connected to the “data1_” atom (Line 20 and 
Line 25). As a result, after using C-SAW to apply this ECL 

Figure 2. Internal representation of components in GME models. 



specification, “PreCondData1_” and “PostCondData1_” 
atoms will be inserted into each component that has a “data1_” 
atom (see Figure 2). 

 

1 defines Start, FindData1, AddConds;  
2  
3 strategy FindData1() 
4 { 
5   atoms()->select(a | a.kindOf() == "Data"  
6       and  a.name() == "data1_")-> AddConds(); 
7 } 
8  
9 strategy AddConds() 
10 { 
11   declare p : model; 
12   declare data, pre, post : atom; 
13  
14   data := self; 
15   p := parent(); 
16  
17   pre:=p.addAtom("Condition","PrecondData1_"); 
18   pre.setAttribute("Kind", "PreCondition"); 
19   pre.setAttribute("Expression", "data1_>200"); 
20   p.addConnection("AddCondition", pre, data); 
21    
22   post:=p.addAtom("Condition", "PostcondData1_"); 
23   post.setAttribute("Kind", "PostCondition"); 
24   post.setAttribute("Expression", "data1_<500"); 
25   p.addConnection("AddCondition", post, data);  
26 } 
27  
28 aspect Start() 
29 { 
30   rootFolder().findFolder("ComponentTypes"). 
31   models()->select(m|m.name().endWith("Impl")) 
32                                  ->FindData1();  
33 } 

 
Listing 2. ECL code for adding pre/post  

conditions in GME models. 
 

1 default base domain Cpp~VisualCpp6.  
2  
3 pattern assertStmt() :  
4         statement = "assert(data1_>200);".  
5  
6 pattern aspect(s:statement_seq): 
7         statement_seq = " \assertStmt\(\){ \s }". 
8  
9 pattern joinpoint(id:identifier):  
10         qualified_id = "\id :: Update".  
11    
12 rule precondition(ret:decl_specifier_seq, 
13                   id:identifier,  
14                   p:parameter_declaration_clause, 
15                   s:statement_seq):  
16      function_definition -> function_definition  
17   =  "\ret \joinpoint \(\id\)(\p){\s}"  
18   -> "\ret \joinpoint \(\id\)(\p){\aspect\(\s\)}" 
19   if ~[modsList:statement_seq .s matches 
20      "\:statement_seq \apect\(\modsList\)"].  
21  
22 public ruleset applyrules =  
23 {  
24   precondition  
25 }. 

 
Listing 3. Generated DMS rule to insert precondition 

statement into the C++ code. 

After the pre/post conditions are weaved into the GME models, 
the next step is to invoke the MDPT interpreter to generate the 
DMS transformation rules. A fragment of the generated DMS 
transformation rule to insert the precondition statement into the 
Bold Stroke C++ code is presented in Listing 3. The DMS rule 
consists of declarations of patterns, rules, conditions, and rule sets 
using the external form (concrete syntax) defined by a language 
domain. The pattern in Line 3 represents the assert statement that 
is to be inserted. The second pattern (Line 6) describes the form 
of the resulting syntax tree. Pattern “joinpoint” (Line 9) 
provides the context in which the transformation rules will be 
applied. Here, the rules will be applied to all of the components 
containing an “Update” method. This pattern is similar to a join 
point in AspectJ [9]. The rule “precondition” (Line 12) 
represents a transformation of adding an assert statement at the 
beginning of each “Update” method. It is worth noting that the 
system developer does not create (or even see) the transformation 
rules. These are created by the MDPT interpreter and directly 
applied toward the transformation of Bold Stroke C++ source 
code using DMS. The resulting transformation will be equivalent 
to the DBC code that was manually added in Listing 1. 

To summarize the whole process for implementing pre/post 
condition checking using two-level aspect weaving, the steps are: 

• In the GME meta-model, include a new modeling element 
called “Condition.” This addition is needed because the 
original Bold Stroke system does not support DBC; 

• Associate different kinds of contracts to data fields in the 
component model using C-SAW; 

• Make extension to the current MDPT interpreter according 
to the new requirements of the pre/post condition concern; 

• Using the MDPT technique, weave specific “assert” 
statements into appropriate locations in the C++ source code 
according to different conditions specified in the 
corresponding GME model and ECL strategies. 

 

4. CONCLUSION AND FUTURE WORK 
This paper outlines a two-level aspect weaving approach to 
enforce DBC over different abstraction levels. An initial 
experiment was conducted to evaluate the feasibility of this 
approach using scenarios from an avionics application. Our model 
aspect weaver (C-SAW) has been successfully applied to many 
other different modeling languages [6], [19]. A model interpreter 
was developed to generate the program transformation rules 
needed to perform widespread source transformation of Boeing’s 
Bold Stroke. In addition to the crosscutting concerns for DBC, the 
transformation process provides several other adaptations based 
on quality of service [14] policies specified in the models, such as 
concurrency control patterns and state management. We selected 
a subset of this system and applied adaptations across hundreds of 
C++ files that were successfully parsed and transformed in 
accordance with changes made in the representative models. For 
more technical details, see [7], [18]. 

Our initial investigation and associated prototype is tailored to a 
specific domain (i.e., real-time embedded avionics). The future 
work will focus on the generalization of the process for 
supporting software system evolution through two-level aspect 
weaving. In addition, we are in the process of developing a model 
testing suite to assist in assessing the correctness of model 



transformations [11], such as those used to specify contracts at the 
modeling level. A debugging toolkit is also planned for C-SAW, 
which will be indispensable for detecting errors in the ECL 
specification during the weaving process. 

The software, publications, and several video demonstrations 
related to this research can be obtained at 
http://www.cis.uab.edu/gray/Research/C-SAW. 
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