
Model Comparison: A Key Challenge for Transformation Testing and
Version Control in Model Driven Software Development

Yuehua Lin, Jing Zhang, and Jeff Gray

Dept. of Computer and Information Sciences, University of Alabama at Birmingham
Birmingham AL 35294-1170

{liny, zhangj, gray} @ cis.uab.edu

Abstract

As models and model transformations are elevated to first-class artifacts within the software
development process, there is an increasing need to introduce core software engineering
principles into modeling activities. In this position paper, we identify model comparison
algorithms as a key toward addressing best practices associated with model transformation testing
and version control of models.

1. Introduction

In the context of model driven software development (MDSD), the creation of models and model
transformations is a central task that requires a mature development environment based on the
best practices of software engineering principles. In a comprehensive approach to MDSD, models
and model transformations must be designed, analyzed, synthesized, tested, maintained and
subjected to configuration management to ensure their quality. In the latter stages of the
development lifecycle (i.e., the implementation stage), standard engineering processes such as
testing and version control have been accepted as vital techniques toward improving quality and
maintainability. However, testing and version control tools and techniques are not widely
available (natively) in most modeling environments. Our position is that this situation leads to the
following challenges that must be addressed to further the best practices of MDSD:

• Lack of a Mechanism for Validating the Correctness of a Model Transformation

Model transformations are first class citizens in MDSD [3]. A large number of approaches and
associated tools have been offered to define and perform model transformation. Typically,
transformation rules and application strategies are written in a special language, called the
transformation specification, which can be either graphical [1] or textual [5]. In model-to-
model transformation, the transformation specifications are interpreted by the transformation
engine to generate the target model(s) from the source model(s). The effect of the
transformation process is to refine the source model to contain additional details or features. A
transformation specification, like the code in an implementation, is written by humans and
susceptible to errors. Additionally, a transformation specification may be reusable across
similar domains. Therefore, it is essential to ensure the correctness of the transformation
specification before it is applied to a collection of source models. However, among the
literature on model transformation research, the important task of transformation testing has
been neglected. The result is a lack of assurance that model transformations are free of faults
and errors (i.e., determining if a particular transformation correctly transformed a source model
into a new target model).

• Version Control Tools do not Match the Structural Nature of Models
An essential capability for any phase of the software development lifecycle is to archive various
versions of a software artifact and to revert back to previous configurations. Traditional version
control and configuration management systems (e.g., CVS and Microsoft SourceSafe) have
been available for many years to assist developers in this important function. However, these
tools operate under a linear file-based paradigm that is purely textual, but models are
structurally rendered in a tree or graphical notion. Thus, there is an abstraction mismatch
between currently available version control tools and the hierarchical nature of models.

We propose model transformation testing and a model-centric version control system as effective
approaches to improving the best practices of MDSD. A common requirement shared by each of
these ideas is the ability to compare two different models to ascertain structural differences. The
next two sections further discuss the importance of transformation testing and model version
control, followed by commentary on the significance of model comparison as a key facilitator for
both of these best practices.

2. Model Transformation Testing

The correctness of a model transformation can be determined by checking if the output of the
model transformation satisfies its intent (i.e., there are no differences between the output model
and the expected model). In a model transformation environment, assuming the model
transformation engine works correctly and the input models are properly specified, the model
transformation specifications are the only artifacts that need to be validated and verified. There
are several ways to ensure the correctness of a model transformation specification. One possible
approach is to apply formal methods in a correctness proving style of verification. However, even
if a product is proved correct, it may nevertheless be subject to other forms of verification such as
testing [11]. Moreover, execution-based testing has several advantages that make it an effective
method to determine whether a task (e.g., model transformation) has been correctly carried out.
These advantages are: 1) the relative ease with which many of the testing activities can be
performed; 2) the software being developed (e.g., model transformation specifications) can be
executed in its expected environment; 3) much of the testing process can be automated [6]. Like
software testing, model transformation specification testing can only show the presence of errors
in a specification and not their absence. However, as a more lightweight alternative to formal
methods, it can be very effective in revealing such errors.

According to the IEEE Standard Glossary of Software Engineering Terminology, testing
is, “the process of exercising or evaluating a system by manual or automated means to verify that
it satisfies specified requirements, or identify differences between expected and actual results”
[11]. The basic testing activities consist of designing test cases, executing the software with those
test cases, and examining the results produced by those executions [6]. Thus, we define model
transformation testing to involve the execution of a deterministic transformation specification
with test data (i.e., input to test cases) and a comparison of the actual results (i.e., the target
model) with the expected output (i.e., the expected model), which must satisfy the intent of the
transformation. If there are no differences between the actual target and expected models, it can
be inferred that the model transformation is correct with respect to the given test specification. If
there are differences between the target and expected models, the transformation specification
needs to be reviewed and modified.

As an initial prototype, Figure 1 shows a framework for testing model transformation
specifications that assists in generating tests, running tests, and documenting tests automatically.
There are three primary components to the testing framework: test case constructor, test engine,
and test analyzer. The test case constructor consumes the test specification and then produces test
cases for the to-be-tested transformation specification. The generated test cases are passed to the

test engine to exercise the specified test cases. Within the testing engine, there is an executor and
a comparator. The executor is responsible for executing the transformation on the source model
and the comparator compares the target model to the expected model and collects the results of
comparison. The test analyzer visualizes the results provided by the comparator and provides a
capability to navigate among any differences.

3. Model-Centric Version Control

It is our position that version control of models will become an increasingly important task of
model development. A file-centric control system maintains an organized set of all the versions of
files that are made over time. Version control systems allow developers to go back to previous
versions of individual files, and to compare any two revisions to view the changes between them
[14]. With respect to MDSD, model-centric version control and differentiation is concerned with
storing all the versions of models, comparing any two versions to calculate the differences, and
visualization of differences.
 The storage and visualization features used by current version control systems are based
upon the metaphor of a stream of linear text. Furthermore, the level of granularity provided to
archive an artifact is at the level of a single file. This metaphor fits well with source code
contained in a collection of files that make up a complete system. However, it is lacking in
several respects when applied to modeling.

Modeling tools are rich in visual hierarchy and graphical representation, which are not
found in the linear text files of source code representation. The current state-of-the-art for using
SourceSafe or CVS to version models is archaic. Whenever a domain expert or modeling
engineer desires to archive their models, the typical approach is to first convert the model into an
XML representation in a linear file. The XML representation of the file is then archived in the
version repository. At this point, the intuitive hierarchy of a model is destroyed and replaced by
links and references – the primary means for representing hierarchy and containment in a flat text
file. Later, if a comparison between models is desired, the domain engineer must sort through a
mass of tagged XML in order to discover differences between versions. With this approach, extra
applications need to be developed to handle the results retrieved from the XML comparison in
order to indicate the mappings and differences on models within the host modeling environment.
Thus, the model versioning and differencing tasks become an exercise in comparing XML files.

 Due to the disadvantages of XML-based model comparison, an alternative solution is to
develop efficient algorithms to compare models that handle the internal data structure of model
tools directly. Moreover, a challenging engineering effort will be to visualize the comparison
results within the host modeling environment. Thus, model comparison and visualization of
model differences are essential to model-centric version control.

4. Model Comparison

Generally, it is possible to compare two fine-grained models that have precisely defined
syntactical structure. The main task of model comparison is to calculate the mappings and the
differences between models. According to the above discussion of model transformation testing,
model comparison needs to be performed to discover differences between the expected model
(the expected result) and the target model (the actual result). Similarly, model comparison is also
required in model-centric version control to detect changes between versioned models. Manual
comparison of models is tedious, exceedingly time consuming, and susceptible to error. Thus, for
the purpose of automation of model comparison and visualization of the results, the following
issues need to be explored deeply.

• What properties of models need to be compared?

The first fundamental issue of model comparison is what properties of models need to be
compared. Generally, the structural properties need to be compared to discover the differences
between two models. However, structures of models may vary in different modeling languages.
The OMG’s Meta-Object Facility (MOF) is stipulated as the language in which all languages
for Model Driven Architecture (MDA) are expressed. For models defined in any MOF-based
modeling language, elements, links and features (e.g., names of elements and links) need to be
compared [2]. Another fundamental issue for model comparison is how to define and represent
the mappings and differences between two models. The approaches also may vary. For example,
although operational terms such as “create” and “delete” are used to represent differences of
models in both [2] and [9], “set” and “insert” are introduced in [2], but not included in [9].
Similarly, “shift” is emphasized in [9], but not included in [2]. Other fundamental questions,
such as “is it possible to have multiple mappings such that the result of model comparison may
not be unique?” are all critical to developing algorithms of model comparison.

• At which level to compare models?

Models are usually rendered in a graphical notation and may be persistently stored in an
intermediate language like XML. Thus, it is possible to compare models via their XML
representation, but problems are raised with this approach as discussed in Section 3. An XML
document is generally a linear structure that represents hierarchy by linked identifiers to other
parts of the document, and this does not match the hierarchy that is visually depicted in most
modeling languages and tools. One possibility is to compare models by traversing the
underlying internal representation provided by the host tool. However, such an approach could
become tool-specific and not reusable.

• What are the effective algorithms?
The critical problem in comparing models is to find effective algorithms to calculate the
differences. Algorithms that assist in finding mappings and differences between XML
documents can be found in [4, 12]. Algorithms for detecting differences between versions of
UML diagrams are introduced in [9] and metamodel-independent algorithms regarding
difference calculation between models are presented in [2]. However, these algorithms can’t be
easily applied to graph-like models defined in a specific modeling environment like the Generic

Modeling Environment (GME) [8]. We suggest a more exact approach that regards model
comparison as graph comparison so that model elements (e.g., vertices and edges) can be
compared directly via model navigation APIs provided by the underlying modeling
environment [13]. But, existing graph matching algorithms are often too expensive for such a
task [7]. Therefore, one practical solution is to loosen the constraints on graph matching to
simplify the algorithm (i.e., requiring that each element of a model have a universally unique
identifier (UUID) [2], or using name matching [13]). In a domain-specific modeling
environment, the meta-model information may be used to aid the comparison such as grouping
the elements and relationships based on type information.

• How to visualize model differences?
Source code is typically represented as a flat text file that is a sequence of linear characters.
However, models are often represented visually as a hierarchical graph with complex internal
representations. Several modeling tools (e.g. the GME) capture the hierarchy and containment
within models explicitly, whereby the modeler recursively clicks on higher-level models in
order to reveal the contents of the containment. The hierarchical nature of models makes it
difficult to observe visually the mappings and differences between two models. A new
visualization technique is essential toward understanding the results of a model transformation
testing framework, and to comprehend the changes between model versions. Currently, the
commonly proposed technique to visualize the model differences is coloring [9], where
different colors are used to indicate whether a model element is missing or redundant.
However, a mature version control system requires more complicated techniques to discover
richer information such as description and hierarchy of model differences.

5. Conclusion

Model transformation testing and model-centric version control are two important activities that
need to be accepted and realized as common best practices within the MDSD community. Model
transformation testing helps to ensure the correctness of model transformations, and version
control of models assists in managing the evolution that occurs throughout the modeling process.
Our position is to suggest these activities as topics suitable for discussion at the workshop.

References

1. Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End Domain-Driven Software

Development Framework,” 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) – Domain-driven Track,
Anaheim, California, October 2003, pp. 8-15.

2. Marcus Alanen and Ivan Porres, “Difference and Union of Models,” Proceedings of the UML
Conference, Springer-Verlag LNCS 2863, San Francisco, California, October 2003, pp. 2-17.

3. Jorn Bettin, “Model-Driven Software Development -- An emerging paradigm for
Industrialized Software Asset Development,” http://www.softmetaware.com/mdsd-and-
isad.pdf, June 2004.

4. Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
“Change Detection in Hierarchically Structured Information,” Proceedings of the ACM
SIGMOD International Conference on Management of Data, Montreal, Canada, June 1996,
pp. 493-504.

5. Jeff Gray, Ted Bapty, Sandeep Neema, Douglas C. Schmidt, Aniruddha Gokhale, and
Balachandran Natarajan, “An Approach for Supporting Aspect-Oriented Domain Modeling,”

Generative Programming and Component Engineering (GPCE 2003), Springer-Verlag
LNCS 2830, Erfurt, Germany, September 2003, pp. 151-168.

6. Mary Jean Harrold, “Testing: A Road Map,” Proceedings of the Future of Software
Engineering, Limerick, Ireland, May 2000, pp. 61-82.

7. Samir Khuller and Balaji Raghavachari, “Graph and Network Algorithms,” ACM Computing
Surveys, March 1996, vol. 28, no. 1, pp. 43-45.

8. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

9. Dirk Ohst, Michael Welle, and Udo Kelter, “Differences between Versions of UML
Diagrams,” European Software Engineering Conference/Foundations of Software
Engineering, Helsinki, Finland, September 2003, pp. 227-236.

10. Stephen R. Schach, “Testing: Principles and Practice,” ACM Computing Surveys, March
1996, vol. 28, no. 1, pp. 277-279.

11. Stephen R. Schach, Classical and Object-Oriented Software Engineering, 6th Edition,
McGraw-Hill, 2004.

12. Yuan Wang, David J. DeWitt, and Jin-Yi Cai, “X -Diff: An Effective Change Detection
Algorithm for XML Documents,” Proceedings of the 19th International Conference on Data
Engineering, Bangalore, India, March 2003, pp. 519-530.

13. Yuehua Lin, Jing Zhang, and Jeff Gray, “A Testing Framework for Model Transformations,”
http://www.cis.uab.edu/gray/Pubs/transformation-testing.pdf.

14. https://www.cvshome.org/nonav/scdocs/ddCVS_cvsglossary.html

