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Abstract. In Model Integrated Computing, it is often desirable to evaluate different design 
alternatives as they relate to issues of scalability. A typical approach to address scalability is to create 
a base model that captures the key interactions of various components (i.e., the essential properties 
and connections among modeling entities). A collection of base models can be adorned with 
necessary information to characterize their replication. In current practice, replication is 
accomplished by scaling the base model manually. This is a time-consuming process that can also 
represent a source of error, especially when there are deep interactions between model components. 
As an alternative to the manual process, this paper presents the idea of a replicator, which is a model 
transformation that expands the number of elements from the base model, and also makes the correct 
connections among the generated modeling elements. The paper motivates the need for replicators 
through case studies taken from models that support different domains. 

1. Introduction 

A powerful justification for the use of models concerns the flexibility and analysis that can 
be performed to explore various design alternatives. This is particularly true for distributed 
real-time and embedded (DRE) systems, which have many properties that are often 
conflicting (e.g., battery consumption versus memory size), where the analysis of system 
properties is often best provided at higher levels of abstraction [13]. A general metric for 
determining the effectiveness of a modeling toolsuite comprises the degree of effort 
required to make a change to a set of models. In previous work, we have shown how 
crosscutting concerns that are distributed across the modeling level negatively affect the 
ability to explore design alternatives [10]. A form of alternative exploration involves 
experimenting with model structures by scaling up different portions of models and 
analyzing the result on scalability. This paper makes a contribution to a previously 
unexplored dimension of model scalability and describes an approach that can be used to 
enable automated replication to assist in rapidly scaling a model. 



Scalability of modeling tools is of utmost concern to designers of large-scale DRE 
systems. From our personal experience, models can have multiple thousands of coarse 
grained components (others have reported similar experience, please see [14]). Modeling 
these components using traditional model creation techniques and tools can approach the 
limits of the effective capability of humans. The process of modeling a large DRE system 
with a domain-specific modeling language (DSML), or a tool like MatLab, is different than 
traditional UML modeling. In DRE systems modeling, the models consist of instances of 
all objects in the system, which can number into several thousand instances from a set of 
types defined in a meta-model (e.g., thousands of individual instantiations of a sensor type 
in a large sensor network model). The traditional class-based modeling of UML, and the 
supporting tools, are typically not concerned with the same type of instance level focus.  

Often, large-scale system models leverage architectures that are already well suited 
toward scalability. Likewise, the modeling languages that specify such systems may 
embody similar patterns of scalability, and may lend themselves favorably toward a 
generative replication process. The contribution of this paper is automatic generation of 
large-scale system models from smaller, baseline specification models by applying basic 
transformation rules that govern the scaling [2] and replication behavior. The result is a 
generative approach [5] toward model replication in the spirit of a software factory [12]. 

The rest of the paper is organized as follows: Section 2 provides an overview of the tools 
used in the paper, followed by an outline of the technical challenges of model replication in 
Section 3. Two case studies of model scalability using replicators are provided in Section 4. 
The conclusion offers summary remarks, as well as related and future work. 

2. Background: Supporting Technologies 

The implementation of the scalability approach described in this paper is tied to a specific 
set of tools, but we believe the general idea can be applied to many toolsuite combinations. 
The modeling tool and model transformation engine used in the work are overviewed in 
this section. The purpose of the paper is not to describe these tools in detail, but an 
introduction may be needed to understand the subsequent sections of the paper. 

2.1 Model-Integrated Computing 

A specific form of model-driven development, called Model-Integrated Computing (MIC) 
[21], has been refined at Vanderbilt University over the past decade to assist the creation 
and synthesis of computer-based systems. A key application area for MIC is those domains 
(such as embedded systems areas typified by automotive and avionics systems [22]) that 
tightly integrate the computational structure of a system and its physical configuration. In 
such systems, MIC has been shown to be a powerful tool for providing adaptability in 
frequently changing environments. The Generic Modeling Environment (GME) [16] is a 
meta-modeling tool based on MIC that can be configured and adapted from meta-level 



specifications (called the modeling paradigm) that describe the domain [15]. An effort to 
make the GME MOF-compliant is detailed in [7]. Each meta-model describes a domain-
specific modeling language (DSML). When using the GME, a modeling paradigm is 
loaded into the tool to define an environment containing all the modeling elements and 
valid relationships that can be constructed in a specific domain. A model compiler can be 
written and invoked from within the GME as a plug-in in order to synthesize a model into 
some other form (e.g., translation to code or simulation scripts). All of the modeling 
languages presented in the paper are developed and hosted within the GME. The GME is 
an open-source meta-programmable tool that is available from the following website: 
http://escher.isis.vanderbilt.edu/tools/get_tool?GME 

2.2 C-SAW: A Model Transformation Engine 

The paper advocates automated model transformation to address scalability concerns. The 
Constraint-Specification Aspect Weaver (C-SAW) is the model transformation engine used 
in the case studies in Section 4. Originally, C-SAW was designed to address crosscutting 
modeling concerns [10], but has evolved into a general model transformation engine. C-
SAW is a GME plug-in and is compatible with any meta-model; thus, it is domain-
independent and can be used with any modeling language defined within the GME. The 
Embedded Constraint Language (ECL) is the language that we developed for C-SAW to 
specify transformations. The ECL will be featured and briefly explained in Figures 3 and 5. 
The C-SAW plug-in, publications, and video demonstrations are available at the following 
website: http://www.cis.uab.edu/gray/Research/C-SAW/ 

3. Alternative Approaches to Model Replication 

This section provides a discussion of key characteristics of a model replication technique. 
An overview of existing replication approaches is presented and a comparison of each 
approach is made with respect to the desired characteristics. The section offers an initial 
justification of the benefits of a model transformation engine to support scalability of 
models through replicating transformations. 

3.1 Key Characteristics for a Replication Approach 

An approach that supports model scalability through replication should have the following 
desirable characteristics: 1) retains the benefits of modeling, 2) general across multiple 
modeling languages, and 3) flexible to support user extensions. Each of these 
characteristics (C1 through C3) is discussed further in this subsection. 
 



C1. Retains the benefits of modeling: As stated in Section 1, the power of 
modeling comes from the ability to perform analysis (e.g., model checking and 
verification of system properties) in a way that would otherwise be difficult at the 
implementation level. A second advantage is the opportunity to explore various 
design alternatives. A model replication technique should not remove these 
benefits. That is, the replication mechanism and tool support should not perform 
scalability in such a way that analysis and design exploration is not possible. This 
seems to be an obvious characteristic to desire, but we have observed replication 
approaches that void these fundamental benefits of modeling. 
 
C2. General across multiple modeling languages: A replication technique that is 
generally applicable across multiple modeling languages can leverage the effort 
expended in creating the underlying transformation mechanism. A side benefit of 
such generality is that a class of users can become familiar with a common 
replicator technique that can be applied to many of the modeling languages they 
use. 
 
C3. Flexible to support user extensions: Further reuse can be realized if the 
replicator supports multiple types of scalability concerns in a templatized fashion 
(e.g., the name, type, and size of the elements to be scaled are parameters to the 
replicator). The most flexible type of replication would allow alteration of the 
semantics of the replication more directly using a notation or language that can be 
manipulated by an end-user. In contrast, replicator techniques that are hard-coded 
and unable to be extended restrict the impact for reuse, thus limiting the value of 
the time spent on creating the replicator. 

 
The next subsection will compare existing replicator approaches to these characteristics. 

3.2 Existing Approaches to Support Model Replication 

From our past experience in applying MIC to DRE modeling, the following categories of 
techniques represent alternative approaches to support replicators: 1) an intermediate phase 
of replication within a model compiler, 2) domain-specific model compiler for a particular 
modeling language, and 3) specification of a replicator using a model transformation 
engine. Each of these approaches is discussed in this subsection and compared to the 
desiderata mentioned in Section 3.1. 
 

A1. Intermediate stage of model compilation: As a model compiler performs its 
translation, it typically traverses a parse tree (containing an internal representation 
of the model) through data structures and APIs provided by the host modeling tool. 
Several model compilers can be constructed that generate different artifacts from 
the same model. One of our earlier ideas for scaling large models considered 



performing the replication as an intermediate stage of the model compiler. Prior to 
the generation phase of the compilation, the parse tree can be converted to an 
intermediate representation that can be expanded to address the desired scalability. 
This idea is represented in the left-hand side of Figure 1. 
 
This is the least satisfying solution to replication and violates all three of the 
desired characteristics enumerated in Section 3.1. The most egregious violation is 
that the approach destroys the benefits of modeling. Because the replication is 
done as a pre-processing phase in the model compiler, the replicated structures are 
never rendered back into the modeling tool itself. Thus, analysis and design 
alternatives are not made available to the end-user for further consideration. 
Furthermore, the pre-processing rules are hard-coded into the model compiler and 
offer little opportunity for reuse across other modeling languages. In general, this 
is the least flexible of all approaches that we considered. 
 
A2. Domain-specific model compiler to support replication: A GME model 
compiler is not only capable of synthesizing to an external artifact, but is also able 
to alter the current model structure through API calls. Another approach to model 
scalability is to construct a model compiler that is capable of replicating the 
models as they appear in the host modeling tool. Such a model compiler has 
detailed knowledge of the specific modeling language, as well as the particular 
scalability concern. Unlike approach A1, this technique preserves the benefits of 
modeling because the end result of the replication provides visualization of the 
scaling, and the replicated models can be further analyzed and refined. 
 
This approach has a few drawbacks as well. Because the replication rules are 
domain-specific and hard-coded into the model compiler, the developed replicator 
has limited use outside of the intended modeling language. Although generality 
across modeling languages is lost, some replicators based on this approach may 
have means to parameterize certain parts of the replication process (e.g., the 
replicator may request the size to scale, or the name of specific elements that are to 
be scaled). 
 
A3. Replication with a model transformation specification: A special type of 
model compiler within the GME is a plug-in that can be applied to any meta-
model (i.e., it is domain-independent). The C-SAW model transformation engine 
is an example of a plug-in that can be applied to any modeling language. C-SAW 
executes as an interpreter and renders all transformations (as specified in the ECL) 
back into the host modeling tool. The ECL can be altered very rapidly to analyze 
the affect of different degrees of scalability (e.g., the affect on performance when 
the model is scaled from 256 to 512 nodes). 
 



This third approach to replication advocates the use of a model transformation 
engine like C-SAW to perform the replication (please see the right-hand side of 
Figure 1 for an overview of the technique). This technique satisfies all of the 
desirable characteristics of a replicator: by definition, the C-SAW tool is 
applicable across many different modeling languages, and the replication strategy 
is specified in a way that can be easily modified, as opposed to a hard-coded rule 
in the approaches described in A1 and A2. With a model transformation engine, a 
code generator is still required for each domain (see “Artifact Generator” in the 
right-hand side of Figure 1), but the scalability issue is addressed independently of 
the modeling language. Our most recent efforts have explored technique A3 on 
several existing modeling languages as described in the next section. 

 

 
 

Fig. 1. Alternative Approaches for Scaling Models 
 
4. Case Studies in Scalability with Model Replicators 
 
In this section, the concept of model replicators is demonstrated on two separate example 
modeling languages that were created in GME for different domains. In each subsection, 
the DSML is briefly introduced, including a discussion of the scalability issues and how 
ECL model transformations solve the scalability problem. The DSMLs chosen are: 
 

• System Integration Modeling Language, which has been used to model hardware 
configurations consisting of up to 5,000 processing nodes for high-energy physics 
applications at Fermi National Accelerator Lab. 

• Event QoS Aspect Language, which has been used to configure a large collection 
of federated event channels for mission computing avionics applications. 

 
In addition to the above cases studies, our initial exploration into scalability of models was 
discussed in a subsection of [11], which describes replication for a different modeling 
language representing unmanned air vehicles to address various quality of service concerns 
related to transmitted video (e.g., bandwidth and frame size adjustment). 



4.1 Scaling the System Integration Modeling Language 

The System Integration Modeling Language (SIML) is a language developed to specify 
configurations of large-scale fault tolerant data processing systems [20]. Features of SIML 
include hierarchical component decomposition and dataflow modeling with point-to-point 
and publish-subscribe communication between components. There are several rules defined 
by the SIML meta-model: 
 

• A system model may be composed of several independent regions 
• Each region model may be composed of several independent local process groups 
• Each local process group model may include several primitive application models 
• Each system, region, and local process group must have a representative manager 

that is responsible for mitigating failures in its area 
 
The local process group is the set of processes that run the set of critical applications which 
perform the system’s overall function. In a data processing network, the local process 
group would include the algorithmic tasks to perform as well as the data processing and 
transport tasks. A region is simply a collection of local process groups, and a system is 
defined as a collection of regions and possibly other supporting processes. As the SIML 
language itself is used to describe configurations of highly scalable architectures, it 
embodies some patterns of scalability as a by-product of the domain for which it was 
created. These patterns include the one-to-many relationship between system and regional 
managers, and also a one-to-many relationship between regional and local process group 
managers. These relationships are well defined. Because this relationship can be captured, 
it should be feasible to perform automatic generation of additional local process groups 
and/or regions to create larger and more elaborate system models. 
 Scaling up a system configuration using SIML can involve: 1) an increase in the number 
of regions, 2) an increase in the number of local process groups per region, or 3) both 1 and 
2. The left-hand side of Figure 2 shows a simple SIML base model that captures a system 
composed of 1 region and 1 local node in that region (shown as an expansion of the parent 
region), utilizing a total of 15 physical modeling elements (several elements are dedicated 
to supporting applications not included in any region). Consider this example when the 
system is increased to 9 regions with 6 local process groups per region. Such replication 
involves the following: 

 
• Replication of the local process group models 
• Replication of entire region models and their contents 
• Generation of communication connections between regional managers and 

newly created local managers 
• Generation of additional communication connections between the system 

manager and new regional manager processes 
 



The scaled model is shown in the right-hand side of Figure 2. This example scales to just 9 
regions and 6 nodes per region simply because of the printed space to visualize the figure. 
In practice, SIML models have been scaled to 32- and 64-node models. However, the 
initial scaling in these cases was performed manually. The ultimate goal of the manual 
process was to scale to 2500 nodes. After 64 nodes, it was determined that scaling to 
further nodes would be too tedious to perform without proper automation through 
improved tool support. Even with just a small expansion, the manual application of the 
same process would require an extraordinary amount of manual effort (much mouse-
clicking and typing) to bring about the requisite changes, and increase the potential for 
introducing error into the model (e.g., forgetting to add a required connection). If the 
design needs to be scaled forward or backward, a manual approach would require 
additional effort that would make the exploration of design alternatives impractical. 
 

 
 

Fig. 2: Visual Example of SIML Scalability 
 

ECL Transformation to Scale SIML: The scalability illustrated in Figure 2 can be 
performed with a model transformation, as illustrated by the ECL specification shown in 
Figure 3. As a point of support for the effectiveness of replicators as transformations, this 
ECL specification was written in less than an hour by a user who was very familiar with 
ECL, but had studied the SIML meta-model for less than a day. 



 
1 aspect Start() 
2 { 
3   scaleUpNode("L2L3Node", 5); //add 5 L2L3Nodes in the Region 
4   scaleUpRegion("Region", 8); //add 8 Regions in the System 
5 } 
6  
7 strategy scaleUpNode(node_name : string; max : integer) 
8 { 
9    rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1); 
10 } 
11  
12 strategy addNode(node_name, max, idx : integer)           //recursively add nodes 
13 { 
14   declare node, new_node, input_port, node_input_port : object; 
15   
16   if (idx<=max) then 
17  node := rootFolder().findFolder("System").findModel(node_name); 
18  new_node := addInstance("Component", node_name, node); 
19    
20  //add connections to the new node; three similar connections are omitted here 
21  input_port := findAtom("fromITCH"); 
22  node_input_port := new_node.findAtom("fromITCH"); 
23  addConnection("Interaction", input_port, node_input_port); 
24   
25  addNode(node_name, max, idx+1); 
26   endif; 
27 } 
28  
29 strategy scaleUpRegion(reg_name : string; max : integer) 
30 { 
31    rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1); 
32 } 
33  
34 strategy addRegion(region_name, max, idx : integer)      //recursively add regions 
35 { 
36   declare region, new_region, out_port, region_in_port, router, new_router : object; 
37   
38   if (idx<=max) then 
39  region := rootFolder().findFolder("System").findModel(region_name); 
40  new_region := addInstance("Component", region_name, region); 
41    
42  //add connections to the new region; four similar connections are omitted here 
43  out_port := findModel("TheSource").findAtom("eventData"); 
44  region_in_port := new_region.findAtom("fromITCH"); 
45  addConnection("Interaction", out_port, region_in_port); 
46   
47      //add a new router and connect it to the new region 
48      router := findAtom("Router"); 
49      new_router := copyAtom(router, "Router"); 
50  addConnection("Router2Component", new_router, new_region); 
51  
52  addRegion(region_name, max, idx+1); 
53   endif; 
54 } 

Fig. 3: ECL Model Transformation to Perform Replication Shown in Figure 2 



The ECL transformation specification is composed of an aspect and several strategies. 
An aspect serves as the starting point of a transformation, and a strategy is used to specify 
the computation entities and perform a particular transformations task. In Figure 3, the 
aspect “Start” (Line 1) invokes two strategies, “scaleUpNode” and 
“scaleUpRegion” in order to replicate the local process group node (“L2L3Node”) 
within the region model, and the region itself. The strategy “scaleUpNode” (Line 7) 
finds out the “Region” model, sets up the context for the transformation, and calls the 
strategy “addNode” (Line 12) that will recursively increase the number of nodes based on 
the given name “L2L3Node.” The new node instance is created on Line 18, which is 
followed by the construction of the communication connections between ports, regional 
manager and the newly created nodes (Line 21 to Line 23). Some other connections are 
omitted here for the sake of brevity. Two other strategies “scaleUpRegion” (Line 29) 
and “addRegion” (Line 34) follow the similar mechanism as above. 

Flexibility of the replicator can be achieved in several ways. Lines 3 and 4 specify the 
size of the scalability, as well as the names of the specific nodes and regions that are to be 
replicated. In addition to these parametric changes that can be made easily, the semantics of 
the replication can be changed because the transformation specified can be modified 
directly. This is not the case in approaches A1 and A2 from Section 3.2 because the 
replication semantics are hard-coded into the model compiler. 

4.2 Scaling the Event QoS Aspect Language  

The Event QoS Aspect Language (EQAL) [6] is a DSML for graphically specifying 
publisher-subscriber service configurations for large-scale DRE systems. Publisher-
subscriber mechanisms, such as event-based communication models, are particularly 
relevant for large-scale DRE systems (e.g., avionics mission computing, distributed 
audio/video processing, and distributed interactive simulations) because they help reduce 
software dependencies and enhance system composability and evolution. In particular, the 
publisher-subscriber architecture of event-based communication allows application 
components to communicate anonymously and asynchronously. The publisher-subscriber 
communication model defines three software roles: 
 

• Publishers generate events to be transmitted 
• Subscribers receive events via hook operations 
• Event channels accept events from publishers and deliver events to subscribers 

 
The EQAL modeling environment consists of a GME meta-model that defines the concepts 
of publisher-subscriber systems, in addition to several model compilers that synthesize 
middleware configuration files from models. The EQAL model compilers automatically 
generate publisher-subscriber service configuration files and component property 
description files needed by the underlying middleware. 
 



The EQAL meta-model defines a modeling paradigm for publisher-subscriber service 
configuration models, which specify quality of service (QoS) configurations, parameters, 
and constraints. For example, the EQAL meta-model contains a distinct set of modeling 
constructs for building a federation of real-time event services supported by the 
Component-Integrated ACE ORB (CIAO) [9], which is a component middleware platform 
targeted by EQAL. A federated event service allows sharing filtering information to 
minimize or eliminate the transmission of unwanted events to a remote entity. Moreover, a 
federated event service allows events that are being communicated in one channel to be 
made available on another channel. The channels typically communicate through CORBA 
Gateways, UDP, or IP Multicast. In Figure 4, to model a federation of event channels in 
different sites, EQAL provides modeling concepts including CORBA Gateways and other 
entities of the publish-subscribe paradigm (e.g., event consumers, event suppliers, and 
event channels). 
 

 
 

Fig. 4: Illustration of Replication in EQAL 
 
The scalability issues in EQAL arise when a small federation of event services must be 

scaled to a very large system, which usually accommodates a large number of publishers 
and subscribers. It is conceivable that EQAL modeling features, such as the event channel, 
the associated QoS attributes, connections and event correlations must be applied 
repeatedly to build a large scale federation of event services. Figure 4 shows a federated 
event service with 3 sites, which is then scaled up to federated event services with 8 sites. 
This scaling process includes three steps: 
 



• Add 5 CORBA_Gateways to each original site 
• Repeatedly replicate one site instance to add 5 more extra sites, each with 5 

CORBA_Gateways 
• Create the connections between all of the 8 sites 

 
The above process can be automated with an ECL transformation that is applied to a base 

model with C-SAW. Figure 5 shows a fragment of the ECL specification for the first step, 
which adds more Gateways to the original sites. The other steps would follow similarly 
using ECL. The size of the replication in this example was kept to 5 sites so that the 
visualization could be rendered appropriately in Figure 4. The approach could be extended 
to scale to hundreds or thousands of sites and gateways. 
 
1 //traverse the original sites to add CORBA_Gateways 
2 //n is the number of the original sites 
3 //m is the total number of sites after scaling 
4 strategy traverseSites(n, i, m, j : integer) 
5 { 
6   declare id_str : string; 
7   if (i <= n) then   
8     id_str := intToString(i);  
9     rootFolder().findModel("NewGateway_Federation").findModel("Site " + id_str) 
10                                                    .addGateWay_r(m, j); 
11     traverseSites(n, i+1, m, j); 
12   endif; 
13 } 
14  
15 //recursively add CORBA_Gateways to each existing site 
16 strategy addGateWay_r(m, j: integer) 
17 { 
18   if (j<=m) then 
19     addGateWay(j);  
20     addGateWay_r(m, j+1); 
21   endif; 
22 } 
23  
24 //add one CORBA_Gateway and connect it to Event_Channel 
25 strategy addGateWay(j: integer) 
26 { 
27   declare id_str : string;  declare ec, site_gw : object; 
28   id_str := intToString(j);  
29   addAtom("CORBA_Gateway", "CORBA_Gateway" + id_str); //create one CORBA_Gateway  
30   ec := findModel("Event_Channel");  site_gw := findAtom("CORBA_Gateway" + id_str); 
31   addConnection("LocalGateway_EC", site_gw, ec);  
32 } 

 
Fig. 5: ECL Fragment to Perform the First Step of Replication in EQAL 

5. Conclusion 

This paper has demonstrated the effectiveness of using a general model transformation 
engine to specify replicators that assist in scaling models. Among the approaches to model 
scalability, a model transformation engine offers several benefits, such as domain-



independence and improvements to productivity (when compared to either the 
corresponding manual effort, or the effort required to write plug-ins that are specific to a 
domain and scalability issue). The case studies presented in this paper highlight the ease of 
specification and the general flexibility provided across domains. The remainder of this 
section outlines the related work in the area and a future work that is needed in order to 
ensure the confidence placed in model replicators with respect to correctness. 
 
Related Work: We are not aware of any other research that has investigated the 
application of model transformations to address scalability concerns like those illustrated in 
this paper. However, a large number of approaches to model transformation have been 
proposed [4] by both academic and industrial researchers (example surveys can be found in 
[4, 19]). There is no specific reason that GME, ECL and C-SAW need to be used for the 
general notion of model replication promoted in this paper; we used this set of tools simply 
because they were most familiar to us and we had access to several DSMLs based on the 
combination of these tools. Other combinations of toolsuites are likely to offer similar 
capabilities. 
 There are several approaches to model transformation, such as graphical languages 
typified by graph grammars (e.g., GReAT [1] and Fujaba [8]), or a hybrid language (e.g., 
the ATLAS Transformation Language [3] and Yet Another Transformation Language 
[18]). Graphical transformation languages provide a visual notation to specify graphical 
patterns of the source and target models (e.g., a subgraph of a graph). However, it can be 
tedious to use purely graphical notations to describe complicated computation algorithms. 
As a result, it may require generation to a separate language to apply and execute the 
transformations. A hybrid language transformation combines declarative and imperative 
constructs inside the transformation language. Declarative constructs are used typically to 
specify source and target patterns as transformation rules (e.g., filtering model elements), 
and imperative constructs are used to implement sequences of instructions (e.g., 
assignment, looping and conditional constructs). However, embedding predefined patterns 
renders complicated syntax and semantics for a hybrid language. 
 With respect to model transformation standardization efforts, C-SAW was under 
development two years prior to the initiation of OMG’s Query View Transformation 
(QVT) request for proposal. It seems reasonable to expect that the final QVT standard 
would be able to describe transformations similar in intent to those presented in this paper. 
For the purpose of exploring our research efforts, we have decided to continue our progress 
on developing C-SAW and later re-evaluate the merits of merging toward a future standard 
like QVT. 
 
Future Work: Transformation specifications, such as those used to specify the replicators 
in this paper, are written by humans and prone to error. To improve the robustness and 
reliability of model transformation, there is a need for testing and debugging support to 
assist in finding and correcting the errors in transformation specifications. Ongoing and 
future work on ECL focuses on the construction of testing and debugging utilities within C-
SAW to ensure the correctness of the ECL transformation specifications [17]. 
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